INVESTIGATING THE FISH DIVERSITY IN ERHAI LAKE BASED ON ENVIRONMENTAL DNA METABARCODING
-
摘要: 研究使用环境DNA宏条形码(eDNA metabarcoding)检测洱海鱼类多样性, 探索适用于洱海鱼类多样性监测和保护的新方法。通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程, 从洱海16个采样点中获得可检测的9个采样点数据, 共检测出17种鱼类, 其中土著种5种、外来种12种; 鲫(Carassius auratus)、鳙(Hypophthalmichthys nobilis)、麦穗鱼(Pseudorasbora parva)、泥鳅(Misgurnus anguillicaudatus)和食蚊鱼(Gambusia affinis)为优势种。研究结果表明虽然环境DNA宏条形码无法完全替代传统的鱼类监测方法, 但作为一种新兴的生物多样性监测手段, 其可用于快速检测洱海鱼类多样性及其空间分布。Abstract: In recent years, environmental DNA metabarcoding (eDNA metabarcoding) has been widely utilized in fish diversity assessments due to its cost-effective and non-invasive strategies with increased sensitivity. To explore new methods for monitoring and protecting Erhai Lake’s fish diversity, this study first used eDNA metabarcoding to detect fish diversity of Erhai Lake. This study used a standardized process of eDNA metabarcoding analysis, including water collection, water filtration, eDNA extraction, genetic marker amplification, sequencing and bioinformatic analyses. A total of 17 fish species were detected from 9 sampling sites, including 5 native species and 12 non-native species. Five species (Carassius auratus, Hypophthalmichthys nobilis, Pseudorasbora parva, Misgurnus anguillicaudatus, and Gambusia affinis) were the dominant species. Although eDNA metabarcoding cannot completely replace traditional methods, it can be used as a supplementary tool to efficiently assess and monitor fish diversity and species distribution patterns in Erhai Lake.
-
Keywords:
- eDNA metabarcoding /
- Non-invasive sampling /
- Species detection /
- Fish diversity
-
-
表 1 基于环境DNA宏条形码在洱海9个采样点检测到的鱼类物种
Table 1 List of fish species detected by eDNA metabarcoding at each of 9 sampling sites in Erhai Lake
目Order 科Family 种Species 采样点Sampling site M1 M2 M4 S7 S8 S9 S10 S11 S12 Totalb 鲤形目Cypriniformes 鲤科Cyprinidae 棒花鱼Abbottina rivularis √ √ √ 3 鲫Carassius auratus √ √ √ √ √ √ √ √ √ 9 草鱼Ctenopharyngodon idella √ √ √ √ √ √ √ √ √ 9 䱗Hemiculter leucisculus √ √ √ √ 4 鲢Hypophthalmichthys molitrix √ √ √ √ √ √ √ √ √ 9 鳙Hypophthalmichthys nobilis √ √ √ √ √ √ √ √ √ 9 青鱼Mylopharyngodon piceus √ √ √ √ √ √ √ 7 麦穗鱼Pseudorasbora parva √ √ √ √ √ √ √ √ √ 9 高体鳑鲏Rhodeus ocellatus √ 1 中华鳑鲏Rhodeus sinensis √ 1 光唇裂腹鱼Schizothorax lissolabiatus √ √ √ √ √ √ √ √ √ 9 大理裂腹鱼*Schizothorax taliensis √ √ √ √ √ √ √ √ √ 9 云南裂腹鱼Schizothorax yunnanensis √ √ √ √ √ √ √ √ √ 9 鳅科Cobitidae 泥鳅Misgurnus anguillicaudatus √ √ √ √ √ √ √ √ √ 9 鳉形目Cyprinodontiformes 胎鳉科Poeciliidae 食蚊鱼Gambusia affinis √ √ √ √ √ √ √ √ √ 9 鲈形目Perciformes 鰕虎鱼科Gobiidae 波氏吻鰕虎鱼Rhinogobius cliffordpopei √ √ √ 3 鲇形目Siluriformes 胡子鲇科 Clariidae 胡子鲇Clarias fuscus √ √ 2 总计Totala 11 13 12 13 12 12 13 13 12 注: a各采样点检出物种总数; b各物种被检测到的次数; *土著特有物种Note: a The total number of detected species at each sampling site; b the occurrence times of each species; * endemic species 表 2 洱海中9个采样点的物种序列数
Table 2 The number of reads detected for each species at each of 9 sampling sites in Erhai Lake
物种Species 各采样点物种序列数Read counts of each species at each site M1 M2 M4 S7 S8 S9 S10 S11 S12 棒花鱼Abbottina rivularis 0 132 0 12 0 0 0 0 13 鲫Carassius auratus 83019 64044 54860 73393 77478 33081 69019 94723 78890 草鱼Ctenopharyngodon idella 3087 5223 91 176 319 638 158 3501 64 䱗Hemiculter leucisculus 0 29 0 94 59 0 0 26 0 鲢Hypophthalmichthys molitrix 299 139 336 836 252 328 276 169 135 鳙Hypophthalmichthys nobilis 44433 48136 34080 39974 52195 17890 48014 56174 32261 青鱼Mylopharyngodon piceus 25 23 20 15 10 29 10 0 0 麦穗鱼Pseudorasbora parva 22938 20990 16093 34047 31005 10435 31787 26806 39718 高体鳑鲏Rhodeus ocellatus 0 0 0 0 0 0 11 0 0 中华鳑鲏Rhodeus sinensis 0 0 0 0 0 0 7212 0 0 光唇裂腹鱼Schizothorax lissolabiatus 1498 18 133 101 72 152 46 83 44 大理裂腹鱼Schizothorax taliensis 1389 348 3160 1137 296 1898 156 3572 1909 云南裂腹鱼Schizothorax yunnanensis 563 6292 1956 1549 2919 883 3605 2580 1888 泥鳅Misgurnus anguillicaudatus 62968 128069 93358 83273 118837 32269 114806 112284 136729 食蚊鱼Gambusia affinis 23933 25304 11263 19958 23052 5983 28785 21715 17344 波氏吻鰕虎鱼Rhinogobius cliffordpopei 0 0 0 0 0 1798 0 5285 5204 胡子鲇Clarias fuscus 0 0 12 0 0 0 0 81 0 总序列数Total reads 244150 298745 215362 254564 306490 105384 303885 326996 314197 表 3 基于传统方法监测到的洱海鱼类资源状况
Table 3 Fish species composition detected by conventional monitoring methods in different years
年份Year 物种数量Species number 优势种Dominant species 总数Total 土著种 外来种 20世纪50年代 17[14, 17]/18[13] 17/18 0 大理裂腹鱼、云南裂腹鱼、大眼鲤、杞麓鲤、洱海四须鲃、鲫、泥鳅、中华青鳉、黄鳝 20世纪80年代 25[14]/32[18]/
34[13]11/17/
1814/15/
16杞麓鲤、鲫、青鱼、鲢、草鱼、棒花鱼、团头鲂、麦穗鱼、中华鳑鲏、兴凯鱊、波氏吻鰕虎鱼、太湖新银鱼 20世纪90年代 19[14]/32[13] 6/17 13/15 鲫、草鱼、鲢、鳙、团头鲂、麦穗鱼、中华鳑鲏、兴凯鱊、棒花鱼、波氏吻鰕虎鱼、子陵吻鰕虎鱼、太湖新银鱼 2009年 26[17]/23[12] 8/5 18/18 鲢、鳙、团头鲂、䱗、太湖新银鱼、波氏吻鰕虎鱼、子陵吻鰕虎鱼、麦穗鱼 2009—
2011年30[13] 14 16 鲢、鳙、团头鲂、太湖新银鱼 2014—
2015年24[18] 5 19 鲫、鲤、鲢、䱗、太湖新银鱼 2018年 33[15] 17 16 鲫、鲤、鲢、鳙、草鱼、青鱼、鰕虎鱼、麦穗鱼 -
[1] Bonar S A, Hubert W A, Willis D W. Standard Methods For Sampling North American Freshwater Fishes [M]. Bethesda, MD: American Fisheries Society, 2009: 1-12
[2] Bayley P B, Peterson J T. An approach to estimate probability of presence and richness of fish species [J]. Transactions of the American Fisheries Society, 2001, 130(4): 620-633. doi: 10.1577/1548-8659(2001)130<0620:AATEPO>2.0.CO;2
[3] Taberlet P, Coissac E, Hajibabaei M, et al. Environmental DNA [J]. Molecular Ecology, 2012, 21(8): 1789-1793. doi: 10.1111/j.1365-294X.2012.05542.x
[4] Thomsen P F, Willerslev E. Environmental DNA–an emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015(183): 4-18. doi: 10.1016/j.biocon.2014.11.019
[5] Ruppert K M, Kline R J, Rahman M S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA [J]. Global Ecology and Conservation, 2019(17): e00547. doi: 10.1016/j.gecco.2019.e00547
[6] Evans N T, Li Y, Renshaw M A, et al. Fish community assessment with edna metabarcoding: Effects of sampling design and bioinformatic filtering [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74(9): 1362-1374. doi: 10.1139/cjfas-2016-0306
[7] Sigsgaard E E, Nielsen I B, Carl H, et al. Seawater environmental DNA reflects seasonality of a coastal fish community [J]. Marine Biology, 2017, 164(6): 128. doi: 10.1007/s00227-017-3147-4
[8] Shu L, Ludwig A, Peng Z. Standards for methods utilizing environmental DNA for detection of fish species [J]. Genes, 2020, 11(3): 296. doi: 10.3390/genes11030296
[9] Zhang S, Lu Q, Wang Y, et al. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes [J]. Molecular Ecology Resources, 2019, 20(1): 242-255.
[10] Zhang H, Yoshizawa S, Iwasaki W, et al. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters [J]. Frontiers in Marine Science, 2019(6): 515. doi: 10.3389/fmars.2019.00515
[11] 徐念, 常剑波. 长江中下游干流环境DNA样本鱼类物种检测的初步研究 [J]. 水生态学杂志, 2016, 27(5): 49-55. Xu N, Chang J B. Preliminary study on fish species detection in the middle and lower Yangtze River using environmental DNA [J]. Journal of Hydroecology, 2016, 27(5): 49-55.
[12] 费骥慧, 唐涛, 邵晓阳. 洱海渔业资源与渔业发展模式 [J]. 湿地科学, 2011, 9(3): 277-283. Fei J H, Tang T, Shao X Y. Fishery resources and developmental patterns of fishery in Erhai Lake [J]. Wetland Science, 2011, 9(3): 277-283.
[13] 严晖, 周正文, 赵芬, 等. 洱海土著鱼类调查研究 [A]. 第四届全国现代生态渔业与水环境综合治理技术汇总 [C]. 北京: 中国水利技术信息中心, 2012: 9 Yan H, Zhou Z W, Zhao F, et al. The Investigation of the Indigenous Fishes in Erhai Lake [A]. The Fourth Comprehensive Collection of China Modern Ecological Fishery and Water Environment Management Technology [C]. Beijing: China Water Conservancy Technology Information Center, 2012: 9
[14] 杜宝汉, 李永安. 洱海鱼类多样性危机及解危对策 [J]. 环境科学研究, 2001, 14(3): 42-44. doi: 10.3321/j.issn:1001-6929.2001.03.013 Du B H, Li Y A. Danger risk to fish diversity in Erhai Lake and proposals to dispel it [J]. Research of Environmental Sciences, 2001, 14(3): 42-44. doi: 10.3321/j.issn:1001-6929.2001.03.013
[15] 周振文. 洱海渔业资源与渔业发展模式的探究 [J]. 农业与技术, 2018, 38(6): 133. Zhou Z W. Exploration on fishery resources and fishery development mode in Erhai lake [J]. Agriculture and Technology, 2018, 38(6): 133.
[16] Miya M, Sato Y, Fukunaga T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species [J]. Royal Society Open Science, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
[17] 何彦敏, 杨堂亮, 刘杰, 等. 洱海鱼类资源现状调查研究 [J]. 楚雄师范学院学报, 2010, 25(3): 53-58. doi: 10.3969/j.issn.1671-7406.2010.03.009 He Y M, Yang T L, Liu J, et al. The investigation of the fish current resources in Erhai Lake [J]. Journal of Chuxiong Normal University, 2010, 25(3): 53-58. doi: 10.3969/j.issn.1671-7406.2010.03.009
[18] 周兴安, 乔永民, 王赛, 等. 洱海鱼类群落结构特征及其与环境因子关系 [J]. 生态学杂志, 2016, 35(6): 1569-1577. Zhou X A, Qiao Y M, Wang S, et al. Characteristics of fish assemblages associated with environmental factors in the Lake Erhai [J]. Chinese Journal of Ecology, 2016, 35(6): 1569-1577.
[19] Barnes M A, Turner C R. The ecology of environmental DNA and implications for conservation genetics [J]. Conservation Genetics, 2015, 17(1): 1-17.
[20] 马根连. 云南大理苍山十八溪水质监测评价 [J]. 人民长江, 2012, 43(12): 68-70. doi: 10.3969/j.issn.1001-4179.2012.12.019 Ma G L. Water quality monitoring and evaluation for 18 streams of Cangshan Mountain, Yunnan Province [J]. Yangtze River, 2012, 43(12): 68-70. doi: 10.3969/j.issn.1001-4179.2012.12.019
[21] Jerde C L, Olds B P, Shogren A J, et al. Influence of stream bottom substrate on retention and transport of vertebrate environmental DNA [J]. Environmental Science and Technology, 2016, 50(16): 8770-8779. doi: 10.1021/acs.est.6b01761
[22] Dejean T, Valentini A, Duparc A, et al. Persistence of environmental DNA in freshwater ecosystems [J]. PLoS One, 2011, 6(8): e23398. doi: 10.1371/journal.pone.0023398
[23] Evans N T, Shirey P D, Wieringa J G, et al. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing [J]. Fisheries, 2017, 42(2): 90-99. doi: 10.1080/03632415.2017.1276329
[24] Shaw J L A, Clarke L J, Wedderburn S D, et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system [J]. Biological Conservation, 2016(197): 131-13. doi: 10.1016/j.biocon.2016.03.010
[25] Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding [J]. Molecular Ecology, 2016, 25(4): 929-942. doi: 10.1111/mec.13428
[26] Balasingham K D, Walter R P, Mandrak N E, et al. Environmental DNA detection of rare and invasive fish species in two great lakes tributaries [J]. Molecular Ecology, 2018, 27(1): 112-127. doi: 10.1111/mec.14395
[27] McDevitt A D, Sales N G, Browett S S, et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals [J]. Journal of Fish Biology, 2019, 95(2): 679-682. doi: 10.1111/jfb.14053
[28] Evans N T, Lamberti G A. Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool [J]. Fisheries Research, 2018(197): 60-66. doi: 10.1016/j.fishres.2017.09.013
[29] Cristescu M E, Hebert P D N. Uses and misuses of environmental DNA in biodiversity science and conservation [J]. Annual Review of Ecology, Evolution, and Systematics, 2018, 49(1): 209-230. doi: 10.1146/annurev-ecolsys-110617-062306
[30] Ushio M, Murakami H, Masuda R, et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing [J]. Metabarcoding and Metagenomics, 2018(2): 1-15.
-
期刊类型引用(38)
1. 范雨薇,胡发祥,富爱华,马万里,杨文超,王庆怡,李迪强,栾晓峰. 基于eDNA技术的毛里湖春季鱼类多样性及分布研究. 生态与农村环境学报. 2025(02): 225-233 . 百度学术
2. 程如丽,罗杨,张玉凤,李清华,王梦,张钰,李英文,沈彦君. 基于环境DNA技术的乌江干流梯级水电站库区的鱼类多样性. 水产学报. 2025(03): 140-157 . 百度学术
3. 徐薇,魏秘,曹俊,蔡露,高少波,朱迪. 耦合水文情势及鱼类繁殖的江垭水库生态调度需求研究. 水生态学杂志. 2024(01): 103-111 . 百度学术
4. 朱书礼,陈蔚涛,武智,夏雨果,杨计平,李跃飞,李捷. 基于环境DNA技术的珠江中下游鱼类多样性初步研究. 南方水产科学. 2024(01): 120-129 . 百度学术
5. 丁洋,李艳艳,赵进勇,彭文启,张晶,任锦豪. 基于环境DNA宏条形码的汉江上游黄金峡段鱼类多样性研究. 北京大学学报(自然科学版). 2024(01): 157-164 . 百度学术
6. 钟传艳,李钢,褚维乐,沈剑,封吉猛,龙晓文. 洱海鱼类多样性. 大理大学学报. 2024(06): 108-114 . 百度学术
7. 张添,隋宥珍,刘连为,孟玮,徐开达,邹锟,周永东. 基于环境DNA技术的舟山南部海域鱼类资源状况和多样性分析. 海洋开发与管理. 2024(03): 114-120 . 百度学术
8. 张浩博,王晓艳,陈治,钟兰萍,高天翔. 基于环境DNA metabarcoding的舟山及其邻近海域鱼类空间分布格局的初步研究. 水产学报. 2024(08): 125-138 . 百度学术
9. 张轶,周兴军,孙文静,岳彩英,白永泉,云婧. 利用环境DNA技术对内蒙古典型湖泊鱼类分布特征的研究. 生态毒理学报. 2024(04): 194-205 . 百度学术
10. 王江江,高晓田,赵春龙,于琪,赵欣,孙砚峰,吴成宾. 河北省土著鳜鱼种质资源鉴定. 河北渔业. 2024(09): 37-47 . 百度学术
11. 沈彦君,张玉凤,王梦,李英文. 长江上游珍稀特有鱼类国家级自然保护区重庆段水域浮游生物多样性及群落结构特征. 重庆师范大学学报(自然科学版). 2024(04): 94-109 . 百度学术
12. Hong CHEN,Wanchao HE,Fenge YANG,Li LIAO,Chengjie YIN,Yushun CHEN,Longgen GUO. Comparison of fish communities using environmental DNA metabarcoding and capture methods in a plateau Erhai Lake, China. Journal of Oceanology and Limnology. 2024(05): 1597-1608 . 必应学术
13. 李筱芹,吴开阳,倪达富,杨丽亚,鲁桃秀,张连博,邓华堂,吴彤飞,何荣超,付梅,姚维志,吕红健. 基于环境DNA技术的梯级水坝对长江上游重要支流鱼类多样性的影响研究——以綦江为例. 生态学报. 2024(19): 8865-8883 . 百度学术
14. 张家铭,周鑫鑫,王维,段聪,李英文,沈彦君. 环境DNA技术在长江江津段鱼类多样性监测中的应用研究. 西华师范大学学报(自然科学版). 2024(06): 579-586 . 百度学术
15. 党莹超 ,李莎 ,苏巍 ,胡凡旭 ,姜伟 . 基于环境DNA技术的宜宾江段秋季鱼类多样性研究. 水产科学. 2024(06): 894-905 . 百度学术
16. 张航,梁智策,匡晨亿,周婷,廖传松,苑晶,郭传波,刘家寿. 基于水声学和渔获物调查的洱海鱼类资源时空分布特征. 水生生物学报. 2024(12): 2029-2041 . 本站查看
17. 杨力凤,杨楠,付海滨,褚栋. 环境DNA技术在生物入侵研究中的应用进展. 植物保护学报. 2023(01): 1-10 . 百度学术
18. 雷姚,周春花,欧阳珊,吴小平. 不同环境样本类型对蚌类环境DNA监测的差异研究. 水生生物学报. 2023(03): 412-423 . 本站查看
19. 言柯程,李建超,田永军,刘纯琳,张玉磊,李志新,丁兆成. 基于环境DNA metabarcoding和底拖网调查的南黄海西部鱼类多样性比较. 中国海洋大学学报(自然科学版). 2023(05): 71-81 . 百度学术
20. 周春花,王蓉蓉,王生,郭婷,欧阳珊,吴小平. 基于环境DNA宏条形码技术的赣江下游(南昌段)鱼类多样性. 湖泊科学. 2023(04): 1423-1440 . 百度学术
21. 张彦彦,唐文乔,陈振锋,龚珑,唐振,张亚. 基于eDNA宏条形码技术的上海骨干河流鱼类多样性研究. 长江流域资源与环境. 2023(07): 1433-1446 . 百度学术
22. 何万朝,尹成杰,袁静,储昭升,张爱,过龙根. 生态廊道建设对洱海不同类型湖湾鱼类群落分布及多样性的影响. 水生生物学报. 2023(12): 1965-1975 . 本站查看
23. 赵金发,刘永,李纯厚,王腾,石娟,肖雅元,吴鹏,宋晓宇. 应用高通量测序技术研究永乐环礁和东岛鱼卵种类组成和分布. 热带海洋学报. 2023(06): 127-136 . 百度学术
24. 肖述文,刘兴国,陆诗敏,赵宇曦,顾兆俊,周润锋. 草鱼单养和混养池塘的水质与生物组成特征. 水生态学杂志. 2023(06): 79-87 . 百度学术
25. 董智玲,陈莎莎,吕宏森,张连博,姚维志,何文平. 基于环境DNA技术的长江上游重庆市江北段鱼类多样性研究. 生态毒理学报. 2023(06): 1-15 . 百度学术
26. 刘燕山,孙晶莹,朱明胜,李大命,唐晟凯,钟立强,张增,王超群,沈冬冬. 基于eDNA技术的太湖鱼类多样性调查. 生态毒理学报. 2023(06): 16-26 . 百度学术
27. 王梦,杨鑫,王维,段聪,刘智皓,陈启亮,李英文,沈彦君. 基于eDNA技术的长江上游珍稀特有鱼类国家级自然保护区重庆段鱼类多样性研究. 水生生物学报. 2022(01): 2-16 . 本站查看
28. 邢迎春,高婉茹,白洁,赵亚辉. 环境DNA在湖泊生物多样性研究中的应用. 水生生物学报. 2022(01): 137-148 . 本站查看
29. 徐欣靖,皮杰,李德亮,刘新华,向建国,余建波. 环境DNA技术在湖泊生物资源调查中的应用进展. 水产养殖. 2022(03): 1-7 . 百度学术
30. 李晓玲,刘洋,王丛丛,俞晔伟,李纲. 基于环境DNA技术的夏季东海鱼类物种多样性研究. 海洋学报. 2022(04): 74-84 . 百度学术
31. 沈梅,肖能文,卢林,罗遵兰,史娜娜,孙光. 环境DNA技术及在鱼类监测中的应用. 水生态学杂志. 2022(02): 133-141 . 百度学术
32. 王月,刘焕章,李莎,俞丹. 基于微滴式数字PCR方法的鱼类环境DNA样本处理与保存技术优化. 水生生物学报. 2022(03): 332-341 . 本站查看
33. 李玉龙,鲍相渤,李轶平,周遵春,付杰,高祥刚,陈百灵,李云峰. 基于环境DNA宏条形码技术的辽东湾典型围海养殖池塘内水母多样性研究. 生态学报. 2022(13): 5303-5313 . 百度学术
34. 沈梅,郭宁宁,罗遵兰,郭晓晨,孙光,肖能文. 基于eDNA metabarcoding探究北京市主要河流鱼类分布及影响因素. 生物多样性. 2022(07): 134-145 . 百度学术
35. 田翰,江艳娥,张俊,陈作志,徐姗楠,朱江峰,于文明. 西沙群岛冷泉区中层鱼类群落结构初探. 南方水产科学. 2022(05): 9-17 . 百度学术
36. 唐晟凯,刘燕山,王华,李大命,张彤晴,孙晶莹,许飞,王志浩. 环境DNA技术在邵伯湖鱼类资源监测中的应用. 水产科学. 2022(06): 1007-1016 . 百度学术
37. 唐晟凯,钱胜峰,沈冬冬,张彤晴,刘燕山,许飞,王华,李大命. 应用环境DNA技术对邵伯湖浮游动物物种检测的初步研究. 水产养殖. 2021(03): 13-20 . 百度学术
38. 刘波,王浩,秦斌,范仲儒,熊薇,陈义永. 基于环境DNA宏条形码技术的北京地区鱼类多样性调查和外来鱼种入侵风险评估. 生物安全学报. 2021(03): 220-229 . 百度学术
其他类型引用(26)