不同盐度下水华束丝藻对CO2浓度倍增的生理响应

康丽娟, 刘永梅, 李敦海, 刘永定

康丽娟, 刘永梅, 李敦海, 刘永定. 不同盐度下水华束丝藻对CO2浓度倍增的生理响应[J]. 水生生物学报, 2007, 31(5): 671-674.
引用本文: 康丽娟, 刘永梅, 李敦海, 刘永定. 不同盐度下水华束丝藻对CO2浓度倍增的生理响应[J]. 水生生物学报, 2007, 31(5): 671-674.
KANG Li-Juan, LIU Yong-Mei, LI Dun-Hai, LIU Yong-Din. CO2 EFFECT OF DOUBLED CO2 AND SALINITY ON SOME PHYSIOLOGICAL CHARACTERISTICS OF APHANIZOMENON FLOSA2QUAE[J]. ACTA HYDROBIOLOGICA SINICA, 2007, 31(5): 671-674.
Citation: KANG Li-Juan, LIU Yong-Mei, LI Dun-Hai, LIU Yong-Din. CO2 EFFECT OF DOUBLED CO2 AND SALINITY ON SOME PHYSIOLOGICAL CHARACTERISTICS OF APHANIZOMENON FLOSA2QUAE[J]. ACTA HYDROBIOLOGICA SINICA, 2007, 31(5): 671-674.

不同盐度下水华束丝藻对CO2浓度倍增的生理响应

基金项目: 

国家自然科学基金资助

CO2 EFFECT OF DOUBLED CO2 AND SALINITY ON SOME PHYSIOLOGICAL CHARACTERISTICS OF APHANIZOMENON FLOSA2QUAE

  • 摘要: 本文研究了在盐度分别为2‰和4‰的条件下,CO2浓度倍增对水华束丝藻(Aphanizomenonflos-aquae)生长速率、光合活性及光合色素比例与丙二醛含量的影响。结果表明随着盐度的增加水华束丝藻的生长速率和光合活性受到显著抑制,叶绿素a与藻蓝素比例大幅降低,丙二醛含量明显提高。在实验盐度范围内,CO2浓度倍增显著促进水华束丝藻的生长速率和最大光合电子传递速率(ETRmax)与色素比例,而且盐度越高促进效果越明显。此外CO2浓度倍增能显著降低丙二醛(MDA)含量。从而减少膜脂过氧化,缓解盐度胁迫。
    Abstract: Aphanizomenon flos-aquae bloom appears regularly nearly at March in recent years. In order to investigate the response of the cyanobacterium A. flos-aquae to the combination of doubled CO2concentration and salinity, an experiment was carried out. Growth rate, photosynthesis, maximal electron transport rate (ETRmax), the ratio of photosynthetic pigment chlorophyll a to phycocyanin (Chl a/ PC) and malondialdehyde (MDA) levels of A. flos-aquae were analyzed. The results demonstrated that salt stress caused decrease in A. flos2aquae growth by disrupting physiological processes, especially photosynthesis. Increased salinity lowered ETRmax. MDA content was increased when salinity elevated. And higher salinity has more distinct effect. Growth rate, ETRmax and Chl a/ PC could be enhanced by elevated CO2concentration, while doubled CO2reduced MDA content.
  • [1]

    Schimel D, et al. Climate change 1995 [A]. In: HoughtonJ T, etal. (Eds.), The science of climate change [M]. Cambridge: Cam2bridge Univ. Press. 1996, 65-131

    [2]

    Chen Y, Fang D W. Effect of low temperature on nitrogenfixation byblue2green algae under osmotic stress [J]. Plant Physiology Commu2nication, 1994, 30: 174 [陈因, 方大惟. 低温对渗透胁迫下蓝藻固氮的影响. 植物生理学通讯, 1994, 30: 174]

    [3]

    Oren A. Salts and brines [A]. In: Whitton B A, Potts M (Eds.),The ecology of cyanobacteria [M]. The Netherlands: K luwer Aca2demic Pubishers. 2000, 281-306

    [4]

    Beardall J, G iordano M. Ecological implications of microalgal andcyanobacterial CCMs and their regulation [J].Funct. Plant Biol.,2002, 29: 335-347

    [5]

    Beardall J, Johnston A M, Raven J A. Environmental regulation ofthe CO2concentrating mechanism in cyanobacteria and microalgae[J]. Can. J. Bot., 1998, 76: 1010-1017

    [6]

    Paerl H W, Bland P T, TuckerJ, Blackwell J. The effectsof salinityon the potential of a blue-green algal (Microcystis aeruginosa) bloomin the Neuse River Estuary. NC. NC Sea Grant Report, 1983,1-83, 84

    [7]

    Sellner K G, Lacouture R V, Parrish C R. Effects of increasingsalinity on a cyanobacteria bloom in the Potomac River estuary [J].Plankton Res., 1988, 10: 49-61

    [8]

    Blumwald E, TelOr E. Osmoregulation and cell composition in salt adaptation of Nostoc muscorum [J]. Arch Microbiol, 1982, 132:168-172

    [9]

    Brabban A D, Orcuut E N, Zinder S H. Interactions between nitrogen fixation and osmoregulation in the methanogenic ArchaeanMethanosarcina barkeri 227 [J]. Appl Environ Microbiol, 1999, 65:1222-1227

    [10]

    Bethke P C, Drew M C. Stomatal and nonstomatal components to in2hibition of photosythesis in leaves of Capsicum annuum during pro-gressive exposure to NaCl salinity [J].Plant Physiol., 1992, 99:219-226

    [11]

    Sultana N, Ikeda T, Itoh R. Effect of NaCl salinityon photosynthesisand dry matter accumulation in developing rice grains [J]. EnvironExp Bot, 1999, 42:211-220

    [12]

    Zhu X G,Zhang Q D. Advances in the researchon the effectsof NaClon photosynthesis [J]. Chin Bull Bot, 1999, 16(4): 332-338 [朱新广, 张其德. NaCl 对光合作用影响的研究进展. 植物学通报, 1999, 16(4):332-338]5 期康丽娟等:不同盐度下水华束丝藻对 CO2浓度倍增的生理响应673

    [13]

    Stanier R Y, et al. Purification and properties of unicellular blue2green algae (Order Chrococcales) [J]. Bacteriol. Rev, 1971, 35:171-205

    [14]

    Li H S. Principles and techniques of plant physiology and biochem2istry [M]. Beijing: High Education Press. 2000, 135 [李合生.《植物生理生化实验原理和技术》. 北京: 高等教育出版社.2000, 135]

    [15]

    Siegelman H W, Chapman D J, Cole W J. The bile pigments ofplants [J]. Biochem. Soc. Symp., 1968, 28: 107-120

    [16]

    Zhang GS, Wang L H, Li YL, et al. Effects of severing stolon onchlorophyll fluorescence characteristicsof Sabina vulgaris [J]. Scien2tia Silvae Sinicae, 2004,40(3): 60-65 [张国盛,王林和,李玉灵,等. 切断匍匐茎对臭柏叶绿素荧光特性的影响. 林业科学, 2004, 40(3): 60-65]

    [17]

    Zhan Y, Fang L, Li T F, et al. Efect of Ca2+on activities of someenzymes in tobacco sccdlings under cold stress [J]. Chin Bull Bot,2002, 19(3): 342-347 [张燕,方力,李天飞,等. 钙对低温胁迫的烟草幼苗某些酶活性的影响. 植物学通报, 2002,19(3):342-347]

    [18]

    Liu J R, Zhang Q D, Zhao K F, et al. Effect of doubled CO2andsalinity on ion levels and chlorophyll a fluorescence induction kineticsin halophyte (Atriplex Centralasiatica) [J]. Acta Scientiae Circum2stantiae, 1998, 18(5):533-538 [刘家尧,张其德,赵可夫,等.大气 CO2倍增和盐度对滨藜离子水平和叶绿素荧光诱导动力学的效应. 环境科学学报, 1998, 18(5): 533-538]

    [19]

    LiuJ R, Y i YJ, Bai KZ, et al. Variationof respiratory enzyme activities of wheat seeding under CO2/ Salinity [J]. Acta BotanicaSinica, 1996, 38(8): 641-646 [刘家尧,衣艳君,白克智, 等.CO2/ 盐冲击对小麦幼苗呼吸酶活性的效应. 植物学报, 1996,38(8): 641-646]

    [20]

    Lenssen GM, Lamers J, Stroetenga M, et al. Interactive effects ofatmospheric CO2enrichment, salinity and flooding on growth of C3(Elymus athericus) and C4(Spartina anglica) salt marsh species[J]. Vegetatio, 1993, 104/ 105: 379-388

    [21]

    Chwarz M, Gale J. Maintenance respiration and carbon balance ofplants at lowlevelsof sodium chloride salinity [J]. Journal of Exper2imental Botany, 1981, 32: 33-41

    [22]

    Zeng M T, Vonshak A. Adaptation of Spirulina platensis to salinity2stress [J]. Comp Bioch Physiol, 1998, 120a: 113-118

    [23]

    Hui H X, Xu X, Li SM. Possible mechanismof inhibitionon photo2synthesis of Lycium barbarum under salt stress [J]. Chinese Journalof Ecology, 2004, 23(1): 5-9 [惠红霞,许兴,李守明. 盐胁迫抑制枸杞光合作用的可能机理. 生态学杂志, 2004, 23(1):5-9]

    [24]

    Sebastiano D, Arturo A, et al. Restrictions to carbon dioxide con2ductance and photosynthesis in spinach leaves recovering from saltstress [J]. Plant Physiology, 1999, 119: 1101-1106

    [25]

    Morgan J A, Hont H W, Monz C A, Lecain D R. Consequences ofgrowth at two carbon dioxide concentration and two temperature forleaf gas exchange in Pascopyrum smithii (C3) and Bouteloua gracilis(C4) [J]. Plant, Cell and Environment, 1994,17: 1023-1033

    [26]

    Lawlor D M, Mitchell R A C. The effects of increasing CO2 on cropphotosynthesis and productivity: A review of field studies [J].Plant, Cell and Environment, 1991,14(8): 807-818

    [27]

    Pettersson R, McDonald A J S. Effects of elevated carbon dioxideconcentration on photosynthesis and growth of small birch plant (Be2tula pendula) at optimal nutrition [J].Plant, Cell and Environ2ment, 1992, 15: 911-919

计量
  • 文章访问数:  860
  • HTML全文浏览量:  0
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-01-03
  • 修回日期:  2006-12-10
  • 发布日期:  2007-09-24

目录

    /

    返回文章
    返回