不同添加方式植酸酶处理豆粕对牙鲆生长和饲料利用率的影响

陈京华, 麦康森

陈京华, 麦康森. 不同添加方式植酸酶处理豆粕对牙鲆生长和饲料利用率的影响[J]. 水生生物学报, 2010, 34(3): 481-488.
引用本文: 陈京华, 麦康森. 不同添加方式植酸酶处理豆粕对牙鲆生长和饲料利用率的影响[J]. 水生生物学报, 2010, 34(3): 481-488.
CHEN Jing-Hua, MAI Kang-Sen. EFFECTS OF DIFFERENT SUPPLEMENTAL METHODS OF PHYTASE TO SOYBEAN MAIL ON GROWTH AND FEED UTILIZATION OF JAPANESE FLOUNDER (PARALICHTHYS OLIVACEUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(3): 481-488.
Citation: CHEN Jing-Hua, MAI Kang-Sen. EFFECTS OF DIFFERENT SUPPLEMENTAL METHODS OF PHYTASE TO SOYBEAN MAIL ON GROWTH AND FEED UTILIZATION OF JAPANESE FLOUNDER (PARALICHTHYS OLIVACEUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(3): 481-488.

不同添加方式植酸酶处理豆粕对牙鲆生长和饲料利用率的影响

基金项目: 

国家自然科学基金(编号:30371120,30800848)

青岛农业大学高层次人才启动基金(编号:630741)资助

EFFECTS OF DIFFERENT SUPPLEMENTAL METHODS OF PHYTASE TO SOYBEAN MAIL ON GROWTH AND FEED UTILIZATION OF JAPANESE FLOUNDER (PARALICHTHYS OLIVACEUS)

  • 摘要: 以初始平均体重(2.02±0.02)g的牙鲆(Paralichthys olivaceus)为实验对象,进行为期70d的摄食生长实验,研究不同添加方式的植酸酶对牙鲆生长和饲料利用的影响。在5000.0g豆粕中添加2.5g植酸酶,然后用产朊假丝酵母(Candidautilis)进行发酵预处理,得到植酸酶预处理豆粕。共制作4种等氮等能(粗蛋白49.7%、总能20.9kJ/g)饲料,对照饲料主要以鱼粉为蛋白源;在对照饲料的基础上,用豆粕蛋白替代45%的鱼粉蛋白配制成豆粕组饲料;在每千克豆粕组饲料中添加1000IU植酸酶,配制成植酸酶组饲料;用植酸酶预处理豆粕蛋白替代45%的鱼粉蛋白配制成植酸酶预处理豆粕组饲料。结果表明,与对照组相比较,用豆粕蛋白替代饲料中45%的鱼粉蛋白,若不添加植酸酶则显著降低牙鲆的特定生长率(P0.01)、饲料效率、蛋白质效率和氮贮积率(P0.05);直接添加植酸酶组、植酸酶预处理豆粕组牙鲆的特定生长率、饲料效率、蛋白质效率和氮贮积率与鱼粉对照组相比较没有出现显著差异(P0.05);与不添加植酸酶的豆粕组相比较,在含豆粕饲料中添加1000IU/kg饲料的植酸酶显著提高牙鲆的特定生长率(P0.01)、氮贮积率(P0.05)和磷贮积率(P0.01),显著降低氮排放率(P0.05)和磷排放率(P0.01),但饲料效率和蛋白质效率没有显著变化(P0.05);在豆粕中添加植酸酶进行发酵预处理,降低了豆粕中植酸含量,在饲料中添加植酸酶预处理豆粕显著提高牙鲆的特定生长率(P0.01)、饲料效率、蛋白质效率和氮贮积率(P0.05),显著降低氮(P0.05)、磷和钙的排放率(P0.01)。
    Abstract: A study was conducted to evaluate the effects of different supplemental methods of phytase on growth and feed utilization of Japanese flounder (Paralichthys olivaceus). The phytase-pretreated soybean meal (PP-SBM) was obtained by fermentation with Candida utilis. Four isonitrogenous (49.7% crude protein) and isocaloric (20.9 kJ/g) diets were formulated. The control diet contained 68.0% fish meal (FM) as the main protein source. In soybean meal (SBM) diets with 0 and 1000 IU/kg phytase, 45% of FM protein was replaced by SBM protein. The PP-SBM diet was formulated in which phytase-pretreated soybean meal protein replaced 45% of FM protein. Each diet was randomly fed to triplicate groups of Japanese flounder with initial weight (2.02 ± 0.02) g/fish. Fish were fed to apparent satiation twice daily (08:00 and 16:00). During the experiment, water temperature fluctuated from 22.5 to 25.5℃, salinity from 29.5 to 32.0 and dissolved oxygen was not less than 7.0 mg/L. At the end of the 10-week feeding trial, survival and feed intake showed no significant difference among dietary treatments (P>0.05). The specific growth rate (SGR), feed efficiency ratio (FER), protein efficiency ratio (PER), nitrogen retention (P0.05). The SGR, FER, PER and nitrogen retention showed no significant difference among fish fed the SBM diet supplemented phytase, PP-SBM diet and control diet (P>0.05). Comparing with the SBM diet without phytase, the fish fed the SBM diet supplemented phytase showed significantly higher SGR (P0.05). The content of phytate in phytase- pretreated SBM was lower than that in SBM. The fish fed the diet contained phytase-pretreated SBM exhibited significantly higher SGR (P0.05). The whole-body crude protein (P0.05). The ash in fish fed the SBM diet without phytase, SBM diet supplemented phytase and PP-SBM diet was significantly higher than that in fish fed FM diet (P<0.05). The results indicate that supplementation of phytase to the SBM diet can improve growth response and utilization of nitrogen and phosphorus, and the pretreatment of soybean meal with 1000 IU/kg diet phytase can improve the growth responses and feed utilization of Japanese flounder (Paralichthys olivaceus).
  • [1]

    Mahgoub S E O, Elhag S A. Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars [J]. Food Chemistry, 1998, 61: 77-80

    [1]

    [3] National Research Council. Nutrient requirement of fish [M]. Washington DC: National Academy Press. 1993 [4] Elangovan A, Shim K F. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb Barbodes altus [J]. Aquaculture, 2000, 189: 133-144

    [2]

    Sugiura S H, Raboy V, Young K A, et al. Availability of phosphorus and trace elements in low phytate varieties of barley and corn for rainbow trout Oncorhynchus mykiss [J]. Aquaculture, 1999, 170: 285-296

    [2]

    [5] Liebert F, Portz L. Nutrient utilization of Nile tilapia Oreo Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase [J]. Aquaculture, 2005, 248: 111-119

    [3]

    [6] Storebakken T, Refstie S, Ruyter B. Soy products as fat and protein sources in fish feeds for intensive aquaculture [A]. In: Drackley J K (Eds.), Soy in Animal Nutrition [C]. USA: Federation of Animal Science Societies. 2000, 127-170

    [4]

    [7] Chen J H, Zhang W B, Mai K S, et al. Effects of a compound feeding attractant on feed intake and growth of Japanese flounder (Paralichthys olivaceus Temminck et Schlegel) [J]. Journal of Fishery Sciences of China, 2006, 13: 959-965 [陈京华, 张文兵, 麦康森, 等. 复合诱食剂对牙鲆摄食生 长的影响. 中国水产科学, 2006, 13: 959-965]

    [5]

    [8] Kikuchi K. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder Paralichthys olivaceus [J]. Aquaculture, 1999, 179: 3-11

    [6]

    [9] AOAC. Official methods of Analysis of AOAC International [M]. Vol. I. Agriculture Chemical; Contaminants, Drug. 16th ed. AOAC International, Arlington, VA. 1995

    [7]

    [10] Ellis R, Morris E R. Improved ion-exchange phytate method [J]. Cereal Chemistry, 1983, 60: 121-124

    [8]

    [11] Lanari D, Agaro E D, Turri C. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout Oncorhynchus mykiss [J]. Aquaculture, 1998, 161: 345-356

    [9]

    [12] Rodehutscord M, Pfeffer E. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout Oncorhynchus mykiss [J]. Water Science and technology, 1995, 31: 143-147

    [10]

    [13] Vielma J, Lall S P, Koskela J, et al. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout Oncorhynchus mykiss [J]. Aquaculture, 1998, 163: 309-323

    [11]

    [14] Schafer A, Koppe W M, Meyer-Burgdorff K H, et al. Effect of a microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal [J]. Water Science and technology, 1995, 31: 149-155

    [12]

    [15] Jackson L S, Li M H, Robinson E H. Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus [J]. Journal of the World Aquaculture Society, 1996, 27: 309-313

    [13]

    [16] Hughes K P, Soares J H. Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass Morone saxatilis [J]. Aquaculture Nutrition, 1998, 4: 133-140

    [14]

    [17] Papatryphon E, Howell R A, Soares J H. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase [J]. Journal of the World Aquaculture Society, 1999, 30: 161-173

    [15]

    [18] Masumoto T, Tamura B, Shimeno S. Effects of phytase on bioavailability of phosphorus in soybean meal-based diets for Japanese flounder Paralichthys olivaceus [J]. Fisheries Science, 2001, 67: 1075-1080

    [16]

    [19] Forster I, Higgs D A, Dosanjh B S, et al. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout Oncorhynchus mykiss held in 11℃ fresh water [J]. Aquaculture, 1999, 179: 109-125

    [17]

    [20] Vielma J, Makinenj T, Ekholm P, et al. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout Oncorhynchus mykiss and algal availability of phosphorus load [J]. Aquaculture, 2000, 183: 349-362

    [18]

    [21] Yan W, Reigh R C, Xu Z. Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tract of channel catfish Ictalurus punctatus fed an all-plantprotein diet [J]. Journal of the World Aquaculture Society, 2002, 33: 10-22

    [19]

    [22] Sajjadi M, Carter C G. Dietary phytase supplementation and the utilization of phosphorus by Atlantic salmon (Salmo salar L.) fed a canola-meal-based diet [J]. Aquaculture, 2004, 240: 417-431

    [20]

    [23] Yoo G Y, Wang X J, Choi S, et al. Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal [J]. Aquaculture, 2005, 243: 315-322

    [21]

    [24] Storebakken T, Shearer K D, Roem A J. Availability of protein, phosphorus and other elements in fish meal, soy protein concentrate and phytase treated soy protein concentrate based diets to Altantic salmon, Salmo salar [J]. Aquaculture, 1998, 161: 365-379

    [22]

    [25] Cain K D, Garling D L. Pretreatment of soybean meal with phytase for salmonoid diets to reduce phosphorus concentrations concentrations in hatchery effluents [J]. Progressive Fish-Culturist, 1995, 57: 114-119

    [23]

    [26] Vielma J, Ruohonen K, Peisker M. Dephytinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2002, 204: 145-156

    [24]

    [27] Caldwell R A. Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin [J]. Journal of Agricultural Food Chemistry, 1992, 40: 43-47

    [25]

    [28] Singh M, Krikorian A D. Inhibition of trypsin activity in vitro by phytate [J]. Journal of Agricultural Food Chemistry, 1982, 30: 799-800

    [26]

    [29] Zhang L, Ai Q H, Mai K S, et al. Effects of phytase and non-starch polysaccharide enzyme supplementation in diets on growth and digestive enzyme activity for Japanese Seabass, Lateolabrax japonicusc [J]. Acta Hydrobiologica Sinica, 2009, 33(1): 82-88 [张璐, 艾庆辉, 麦康森, 等. 植酸酶 和非淀粉多糖酶对鲈鱼生长和消化酶活性的影响. 水生 生物学报, 2009, 33(1): 82-88]

    [27]

    [30] Ketola H G, Harland B F. Influence of phosphorus in rainbow trout diets on phosphorus discharges in effluent water [J]. Transactions of the American Fisheries Society, 1993, 122: 1120-1126

    [28]

    [31] Satoh S, Hernandez A, Tokoro T, et al. Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet [J]. Aquaculture, 2003, 224: 271-282

    [29]

    [32] Zhang C X, Mai K S, Ai Q H, et al. Effects of exogenous enzymes on ammonia nitrogen and soluble phosphorus excretion in large yellow croaker (Pseudosciaena crocea) and Japanese seabass (Lateolabrax Japonicus) [J]. Acta Hydrobiologica Sinica, 2008, 32(2): 231-236 [张春晓, 麦康森, 艾 庆辉, 等. 饲料中添加外源酶对大黄鱼和鲈氮磷排泄的影 响. 水生生物学报, 2008, 32(2): 231-236]

  • 期刊类型引用(15)

    1. 贺加贝,胡丽萍,曲忠,张玉恒,朱光辉,赵强. 饵料种类、规格、投喂量和养殖密度对脉红螺存活及生长的影响. 水产学杂志. 2021(06): 36-40+48 . 百度学术
    2. 蒋迪,吕富,王爱民,胡毅,张明明,乔帼,黄金田,陈涛,王晓清. 蚕蛹替代鱼粉对中华鳖幼鳖表观消化率、消化酶及血液生化指标的影响. 江苏农业科学. 2018(12): 132-135 . 百度学术
    3. 张晓清,徐树德,李小勤,冷向军. 不同磷酸二氢钙含量饲料中添加中性植酸酶对异育银鲫生长及营养物质表观消化率、沉积率和血浆生化指标的影响. 动物营养学报. 2016(05): 1598-1608 . 百度学术
    4. 卜小丽,刘翼,刘世操,陈帆,吴丰惟,韩朋伟,祝爱侠. 植酸酶处理植物性蛋白质原料对吉富罗非鱼生长性能及磷利用率的影响. 中国饲料. 2016(08): 33-36 . 百度学术
    5. 鲁媛媛,吴立新,姜志强,陈炜,张雪. 饲料中添加外源酶对大菱鲆幼鱼生长和饲料利用率的影响. 水产科学. 2014(11): 674-679 . 百度学术
    6. 柴仙琦,冷向军,张民,刘国锋,唐鹏. 酶制剂在水产饲料中的应用及研究进展. 饲料工业. 2014(02): 33-36 . 百度学术
    7. 张鹏骞,孟玉萍,张树苗,陈星,段建彬,钟震宇. 圈养黇鹿对北方4种常见苗木叶片适口性浅析. 山西农业大学学报(自然科学版). 2014(04): 332-335 . 百度学术
    8. 华雪铭,陈瑶琴,王世忠,钟国防,周洪琪. 植酸酶对草鱼和新吉富罗非鱼消化酶活性的影响. 动物学杂志. 2013(04): 562-568 . 百度学术
    9. 孟祥科,孙阳,屈菲,姜志强,毛明光,李艳秋,吴洪. 植酸酶对红鳍东方鲀幼鱼生长、消化酶及消化率的影响. 大连海洋大学学报. 2013(04): 323-328 . 百度学术
    10. 陆静,邵庆均. 水产动物对饲料中磷的利用研究进展. 中国饲料. 2013(01): 34-38 . 百度学术
    11. 汉雪梅,张曦,陶琳丽,邓君明. 豆粕替代鱼粉对鱼类胆固醇代谢影响的研究进展. 云南农业大学学报(自然科学). 2013(05): 734-740 . 百度学术
    12. 宋永康,黄薇,姚清华,林香信,林虬. 水产饲料用寡肽豆粕制备工艺的研究. 中国粮油学报. 2013(08): 41-45+50 . 百度学术
    13. 刘行彪,黄可,付熊,吴晗冰,杨雨虹. 植酸酶对斑点叉尾生长性能及磷当量的研究. 水生生物学报. 2012(01): 57-65 . 本站查看
    14. 黄可,杨雨虹,刘行彪,付熊,吴晗冰. 植酸酶预处理饲料对斑点叉尾鮰生长及磷利用率的影响. 动物营养学报. 2011(07): 1217-1224 . 百度学术
    15. 刘行彪,周金敏,周樱. 植酸酶替代磷酸二氢钙对斑点叉尾鮰生长及饲料利用的影响. 饲料工业. 2011(22): 26-29 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  1106
  • HTML全文浏览量:  0
  • PDF下载量:  597
  • 被引次数: 23
出版历程
  • 收稿日期:  2008-12-17
  • 修回日期:  2009-09-22
  • 发布日期:  2010-05-24

目录

    /

    返回文章
    返回