梅子垭水库生态因子场的分形特征

赵斌, 蔡庆华

赵斌, 蔡庆华. 梅子垭水库生态因子场的分形特征[J]. 水生生物学报, 2000, 24(5): 481-486.
引用本文: 赵斌, 蔡庆华. 梅子垭水库生态因子场的分形特征[J]. 水生生物学报, 2000, 24(5): 481-486.
ZHAO Bin, CAI Qing-hua. FRACTAL CHARACTER OF ECOLOGICAL FACTOR FIELD IN MEIZIYA RESERVOIR[J]. ACTA HYDROBIOLOGICA SINICA, 2000, 24(5): 481-486.
Citation: ZHAO Bin, CAI Qing-hua. FRACTAL CHARACTER OF ECOLOGICAL FACTOR FIELD IN MEIZIYA RESERVOIR[J]. ACTA HYDROBIOLOGICA SINICA, 2000, 24(5): 481-486.

梅子垭水库生态因子场的分形特征

基金项目: 

国家自然科学基金项目(39670150)

国家“九五”科技攻关专题(96-920-04-12)

FRACTAL CHARACTER OF ECOLOGICAL FACTOR FIELD IN MEIZIYA RESERVOIR

  • 摘要: 水生态系统由于多了一层水的介质以及水生生物较短的生命周期,使得其生态格局描述相对困难,对其进行定量描述的工作也相对较少。作为一个初步探索,分别应用非线性科学中的分形理论,对梅子垭水库的典型理化因子的生态因子场的水平的2维空间格局进行了分析,确定各浓度的稳定程度。
    Abstract: Water body is incorporated with a medium of water and the aquatic organisms have relatively short life span, and the studies on quantitative aspect of freshwater ecological patterns are relatively few. As a preliminary study, this paper deals with use of fractal theory of nonlinear science to analyze horizontal two dimension spatial pattern of concentration field of typical physicochemical factors in Meiziya Reservoir. Fractal theory is introduced in this paper for comparing and analyzing spatial occupancy potential of concentration and determining which concentration is of steady presence.
  • [1]

    蔡庆华,等.芦苇生长格局分形特征的初步研究[J].水生生物学报,1998,22(2):123-127

    [2]

    马克明,等.东北羊草草原群落格局的分数维(Fractal)理论研究[A].辛厚文.分形理论及其应用[M].合肥:中国科学技术大学出版社,1993.258-264

    [3]

    张喜军,等.东北羊草草原主要环境因子的分形分析[A].辛厚文.分形理论及其应用[M].合肥:中国科学技术大学出版社,1993.252-257

    [4]

    祖元刚,等.分形理论与生态学[A].李博.现代生态学讲座[C].北京.科学出版社, 1995.65-72

    [5]

    Burrough P A.Fractal dimensions of landscapes and other environmental data [J].Natural, 1981, 194:240-242

    [6]

    Harris G P.Pattern, process and prediction in aquatic ecology-a limnological view of some general ecological problems [J].Freshwater Biology, 1994, 32:143-160

    [7]

    Krummel J R, et al.Landscape patterns in disturbed environment [J].Oikos, 1987, 48:321-324

    [8]

    Li D, & Ganczarczyk, J.Fractal geometry of particle aggregates generated in water and wastewater treatment processes [J].Environ.Sci.Technol., 1989, 23(11):1385-1389

    [9]

    Logan, B E.et al.Fractal geometry of marine snow and other biological aggregates [J].Limnol.Oceanogr., 1990, 35(1):130-136

    [10]

    Mandelbrot B B.The fractal geometry of nature [M].W.H.Freeman.1982

    [11]

    Milne B T.Measuring the fractal geometry of landscapes [J].Appl.Math.and Comp., 1988, 27:67-79.

    [12]

    Morse, D J.et al.Fractal dimension of vegetation and the distribution of arthropod body lengths [J].Nature, 1985, 314:731-733

    [13]

    Palmer M V.Fractal geometry: a tool for describing spatial pattern [J].Vegatation, 1988, 75:91-102

    [14]

    Rice J A.Fractal nature of humic materials [J].Environ.Sci.Technol., 1993, 27(2):413-414

    [15]

    赵斌,蔡庆华.地统计学分析方法在水生态系统研究中的应用[J].水生生物学报,2000,24(5):515-521

    [16]

    Fisher S G.Pattern, process and scale in freshwater systems: some unifying thoughts [C].Giller, P.S, et al., Aquatic Ecology: scale, pattern and process [M], Blackwell Science Ltd.1994, 575-592

    [17]

    赵斌,蔡庆华.分形理论对水生态系统空间格局研究[J].水生生物学报,2000,24(5):475-481

    [18]

    蔡庆华.湖泊富营养化综合评价方法[J].湖泊科学,1997, 9(1):89-94

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  849
  • HTML全文浏览量:  0
  • PDF下载量:  446
  • 被引次数: 1
出版历程
  • 收稿日期:  1999-10-14
  • 修回日期:  2000-05-29
  • 发布日期:  2000-09-24

目录

    /

    返回文章
    返回