基于感光色素吸收信号的太湖藻类识别
IDENTIFICATION OF ALGAE USING PHOTOSENSITIVE PIGMENT ABSORPTION SIGNALS IN TAIHU LAKE
-
摘要: 铜绿微囊藻和斜生栅藻是太湖"水华"的主要藻种,基于室内纯铜绿微囊藻、斜生栅藻组成色素的吸收系数,通过四阶微分、标准化系数等方法对太湖水体浮游植物中铜绿微囊藻和斜生栅藻进行识别,并确定其组成比例。结果表明,纯藻组成色素的吸收系数应用于其在太湖水体浮游植物中比例的确定和识别中,能够全面考虑辅助色素的识别作用,较好地避免非色素物质吸收信号的干扰,具有较好的识别效果。太湖水体浮游色素中铜绿微囊藻比例最高,斜生栅藻次之,由夏季向冬季过度中,铜绿微囊藻比例不断减小,斜生栅藻的比例逐渐升高,但铜绿微囊藻比例仍略高于斜生栅藻;铜绿微囊藻的区域分布差异性较小,但时间差异性相对较大,而斜生栅藻恰恰相反,空间分布差异性较大而时间分布差异性较小。Abstract: Microcystis aentginosa and Scenedesmus obliquus are the main part of algae blooms in Lake Taihu. For the purpose of identify the type and percentage of algae in algae blooms, thrice courses experiment were carried out on 16th Aug., 23th Oct., 2006 and 12th Nov., 2007, additionally, photosensitive pigment absorption signals of pure Microcystis aentginosa and Scenedesmus obliquus were measured in the laboratory. The photosensitive pigments of water samples were identified by the methods of Fourth-Derivative and standardization coefficient. Then the percentage of Microcystis aentginosa and Scenedesmus obliquus in the Taihu Lake were estimated through the match-up method of absorption signals. The results indicated that photosensitive pigment absorption signals of pure algae could be well used in the algae identification; it made a full consideration to the effect of Auxiliary pigment in identification, and gave a better method to avoid the interference of non-pigment material absorption signal. Microcystis aentginosa had the highest percentage in the wild phytoplankton population, which followed by Scenedesmus obliquus. The proportion of Microcystis aeruginosa decreased from summer to winter, while Scenedesmus obliquus increased gradually, but the percentage of Microcystis aeruginosa still slightly higher than that of Scenedesmus obliquus. The spatial variation of Microcystis aeruginosa is very small, but the temporal difference is huge, on the contrary, Scenedesmus obliquus has large spatial variation and small temporal variation.
-
Keywords:
- Fourth-Derivative /
- Algae percentage /
- Absorption coefficient /
- Algae identification
-
-
[1] Demers S, Roy S, Gagnon R. Rapid light-induced changes in cell fluorescence and in xanthophylls light cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): A photoprotection mechanism [J]. Marine Ecology Progress, 1991, 76: 185-l 93
[1] [3] Kroon B M, Prezelin B B, SchofieiO D. Chromatic regulation of quantum yields for photosystem 2 charge separation, oxygen evolution, and carbon fixation in Heterocapsa pygmaea (Pyrrophyta) [J]. Phycology, 1993, 29: 453-462
[2] Johnsen G, Sakshau E. Bio-optical characteristics and photoadaptite responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gymnodinium galatheanurn, and two strains of Prorocentrum minimum [J]. Phycology, 1993, 29: 627-642
[2] [4] Millie D E, Kirkpatrick G J, Vinyard B T. Relating photosynthetic pigments and in vivo optical density spectra to irradiance for the Florida red-tide dinoflagellate Gymnodinium breve [J]. Marine Ecology Progress, 1995a, 120: 65-75
[3] [5] Tester I A, Geesey M E, Guo C, et al. Evaluating phytoplankton dynamics in the Newport River estuary (North Carolina) by HPLC-derived pigment profiles [J]. Marine Ecology Progress, 1995, 124: 237-245
[4] [6] Lü H G, Zhang X H, Gong C Y, Studies on the algorithm and identification of three dimensional fluorescence spectroscopy of algae [J]. China Environmental Science, 2005, 25(5): 581-584 [吕洪刚, 张锡辉, 龚纯英. 藻类的三维荧 光光谱辨别及算法研究. 中国环境科学, 2005, 25(5): 581-584]
[5] [7] Zhang Q Q, Lei S H, Wang X L. Research on discrimination of 3D fluorescence spectra of phytoplanktons [J]. Spectroscopy and Spectral Analysis, 2004, 24(10): 1227-1229 [张 前前, 类淑河, 王修林. 浮游植物活体三维荧光光谱分类 判别方法研究. 光谱学与光谱分, 2004, 24(10): 1227-1229]
[6] [8] Jin H L, Yan B, Wang Y T. Research on live alga recognition base on differential coefficient fluorescence spectrum [J]. Journal of Yanshan University, 2005, 29(6): 493-496 [金海 龙, 严冰, 王玉田. 基于导数荧光光谱的活体海藻识别方 法研究. 燕山大学学报, 2005, 29(6): 493-496]
[7] [9] Jin H L, Wang Y T. Research on recognition method of living alga based on stimulating fluorescence spectrum [J]. Chinese Journal of Sensors and Actuators, 2006, 19(1): 97-99 [金海龙, 王玉田. 基于荧光发射光谱的活体海藻 识别方法研究. 传感技术学报, 2006, 19(1): 97-99]
[8] [10] Hu X P, Su R G, Zhang C S, et al. Fluorescence discrimination technology for the red tide algae by spectra similarity index [J]. Chinese Journal of Lasers, 2008, 35(1): 115-119 [胡序朋, 苏荣国, 张传松, 等. 基于光谱相似性指数的赤 潮藻荧光识别技术. 中国激光, 2008, 35(1): 115-119]
[9] [11] Lu L, Su R G, Wang X L, et al. Study on the characters of phytoplankton chlorophyll fluorescence excitation spectra based on fourth-derivative [J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2307-2312 [卢璐, 苏荣国, 王修 林. 基于四阶导数的浮游植物叶绿素荧光激发光谱特征 研究. 光谱学与光谱分析, 2007, 27(11): 2307-2312]
[10] [12] Su R G, Liang S K, Hu X P, et al. Identif ication of bacillariophyta and pyrrophyta by using fluorescence spectrum and principal component analysis [J]. Advances in Marine Science, 2007, 25(2): 238-246 [苏荣国, 梁生康, 胡序朋, 等. 荧光光谱结合主成分分析对硅藻和甲藻的识别测定. 海洋科学进展, 2007, 25(2): 238-246]
[11] [13] Su R G, Hu X P, Zhang C S, et al. Discrimination of red tide algae by fluorescence spectra and principle component analysis [J]. Environmental Science, 2007, 28(7): 1529-1533 [苏荣国, 胡序朋, 张传松, 等. 荧光光谱结合 主成分分析对赤潮藻的识别测定. 环境科学, 2007, 28(7): 1529-1533]
[12] [14] Zhang F, Wang L, Su R G, et al. Research on wavelet analysis in the characteristics extracting and identification of discrete 3D fluorescence spectra of phytoplankton [J]. Chinese Journal of Sensors and Actuators, 2007, 20(10): 2143-2150 [张芳, 王良, 苏荣国, 等.小波分析在活体浮游植物离散 三维荧光光谱特征提取及识别中的应用研究. 传感技术 学报, 2007, 20(10): 2143-2150]
[13] [15] Zhao D Z, Zhang F S, Du F, et al. Interpretation of sun-induced fluorescence peak of chlorophyll a on reflectance spectrum of algal waters [J]. Journal of Remote Sensing, 2005, 9(3): 265-270 [赵冬至, 张丰收, 杜飞, 等. 不 同藻类水体太阳激发的叶绿素a 荧光峰(SICF)特性研究. 遥感学报, 2005, 9(3): 265-270]
[14] [16] Xing X G. Investigations on chlorophyll fluorescence remote sensing [D]. 2008 [邢小罡. 叶绿素荧光遥感研究. 中国海 洋大学, 2008]
[15] [17] Abbott M R, Letelier R M. MODIS ATBD No. 22 Chlorophyll Fluorescence [R]. 1996
[16] [18] Letelier R M, Abbott M R. An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS) [J]. Remote Sensing of Environment, 1996, 58: 215-223
[17] [19] Gower J F R, Brown L, Borstad G A. Observations of chlorophyll fluorescence in west coast waters of canada using the MODIS satellite sensor [J]. Canadian Journal of Remote Sensing, 2004, 30: 17-25
[18] [20] Zhang Q Q, Wang L, Lei S H, et al. Characteristics of absorption spectra of phytoplankton [J]. Spectroscopy and Spectral Analysis, 2006, 26(9): 1676-1680 [张前前, 王磊, 类淑河, 等. 浮游植物吸收光谱特征分析. 光谱学与光谱 分析, 2006, 26(9): 1676-1680]
[19] [21] Lee Z P, Rhea W J, Arnone R, et al. Absorption coefficients of marine waters: expanding multiband information to hyperspectral data [J]. Transactions on Geoscience and Remote Sensing, 2005, 43(1): 118-124
[20] [22] Mueller J L, Fargion G S, Zaneveld R V, et al. Ocean optics protocols for satellite ocean color sensor validation [S]. IVNASA, 2003, Revision 4. Volume
[21] [23] Bourdet D, Whittle T M, Douglas A A, et al. A new set of type curves simplifies well test analysis [J]. World Oil, 1983, 95-106
[22] [24] Bourdet D, Ayoub J A, Pirard Y M. Use of pressure derivative in well-test interpretation [J]. SPE Formation Evaluation, 1989, 293-302
[23] [25] Spane F A, Wurstner S K. DERIV: A computer program for calculating pressure derivatives for use in hydraulic test analysis [J]. Ground Water, 1993, 31(5): 814-822
[24] [26] Bourdet D. Well Test Analysis: The Use of Advanced Interpretation Models [M]. Elsevier, New York, 2002, 426
[25] [27] Butler W L, Hopkins D W. Higher derivative analysis of complex absorption spectra [J]. Photochemistry and Photobiology, 1999, 12(6): 439-450
[26] [28] Tsai F, Philpot W. Derivative analysis of hyperspectral data [J]. Remote Sensing Environ 1998, 66: 41-51
[27] [29] Millie D F, Schofield O M, Kirkpatrick G J. Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, Gymnodinium breve [J]. Limnol Oceanogr, 1997, 42(5): 1240-1251
[28] [30] Lay J O, Gross M L, Zwinselman J J, et al. A field ionization and collisionally activated dissociation/charge stripping study of some [C9 H10]+ ions [J]. Org Mass Spectrom, 1983, 18(1): 16-21
[29] [31] Wan K X, Vidavsky I, Gross M L. Comparing similar spectra: from similarity index to spectral cont rast angle [J]. Am Soc Mass Spectrum, 2002, 13: 85-88
[30] [32] Wang H Y, Yang F T, Liu L. Comparison and application of standardized regressive coefficient & partial correlation coefficient [J]. The Journal of Quantitative & Technical Economics, 2006, 9: 150-155 [王海燕, 杨方廷, 刘鲁. 标准 化系数与偏相关系数的比较与应用. 数量经济技术经济 研究, 2006, 9: 150-155]
[31] [33] Zhang X F, Kong F X, Cao H S. Recruitment dynamics of bloom-forming cyanobacteria in Meiliang Bay of Taihu Lake [J]. Chinese Journal of Applied Ecology, 2005, 16(7): 1346-1350 [张晓峰, 孔繁翔, 曹焕生. 太湖梅梁湾水华 蓝藻复苏过程的研究. 应用生态学报, 2005, 16(7): 1346-1350]
[32] [34] Jiang Y C, Ding J Q, Zhang H J. Analysis of algae condition of Lake Tai [J]. Jiangsu Environmental Science and Technology, 2001, 14(1): 30-31 [江耀慈, 丁建清, 张虎军. 太 湖藻类状况分析. 江苏环境科技, 2001, 14(1): 30-31]
[33] [35] Qin B Q, Hu W P, Chen W M, et al. the mechanism of evolution of Taihu Lake water environment [M]. Science Press. 2004, 209, 260 [秦伯强, 胡维平, 陈伟民, 等. 太湖水环境 演化过程与机理. 科学出版社. 2004, 209, 260]
[35] [37] Wang M, Li T, Li A F, et al. effect of lighting temperature and PH on photosynthetic chatacters of Haematococcus pluviali CG-11 [J]. Acta Hydrobiologica Sinica, 2009, 33(3): 400-405 [王铭, 李涛, 李爱芬, 等. 光照、温度和pH 对 雨生红球藻光合特性的影响. 水生生物学报, 2009, 33(3): 400-405]
[36] [38] Qin S, Liu G X, Hu Z Y. The accumulation of astaxanthin and the response of photosynthetic activity in Scenedesmus obliquus [J]. Acta Hydrobiologica Sinica, 2009, 33(3): 509-515) [秦山, 刘国祥, 胡征宇. 斜生栅藻中虾青素的 积累过程及其光合活性变化. 水生生物学报, 2009, 33(3): 509-515]
[37] [39] Bricaud A, Babin M. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization [J]. Journal of Geophysical Research, 1995, 7(100): 13321-13332
[38] [40] Bricaud A, Stramski D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Perupwelling area and the Sargasso Sea [J]. Limnol Oceanogr, 1990, 35(3): 562-582
[39] [41] Roesler C S, Perry M J. Modeling in stiu phytoplankton absorption from total absorption spectral in productive inland water [J]. Limnol Oceanogr, 1989, 34(8): 1510-1523
-
期刊类型引用(2)
1. 朱雨新,李云梅,张玉,王怀警,蔡小兰,成鑫,吕恒. 基于遥感反射率的太湖优势藻识别方法. 湖泊科学. 2023(01): 73-87 . 百度学术
2. 褚乔,张壹萱,张玉超,马荣华,胡旻琪. 基于水华蓝藻固有光学特性的主要类群定量识别方法. 湖泊科学. 2021(01): 74-85 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 890
- HTML全文浏览量: 0
- PDF下载量: 524
- 被引次数: 7