大黄鱼微卫星标记的开发及其遗传方式分析

叶华, 任鹏, 刘洋, 刘贤德, 王志勇

叶华, 任鹏, 刘洋, 刘贤德, 王志勇. 大黄鱼微卫星标记的开发及其遗传方式分析[J]. 水生生物学报, 2012, 36(6): 1156-1163. DOI: 10.3724/SP.J.1035.2012.01156
引用本文: 叶华, 任鹏, 刘洋, 刘贤德, 王志勇. 大黄鱼微卫星标记的开发及其遗传方式分析[J]. 水生生物学报, 2012, 36(6): 1156-1163. DOI: 10.3724/SP.J.1035.2012.01156
Ye Hua, Ren Peng, Liu Yang, Liu Xian-de, Wang Zhi-yong. ISOLATION AND GENETIC ANALYSIS OF MICROSATELLITE MARKERS FOR LARIMICHTHYS CROCEA[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(6): 1156-1163. DOI: 10.3724/SP.J.1035.2012.01156
Citation: Ye Hua, Ren Peng, Liu Yang, Liu Xian-de, Wang Zhi-yong. ISOLATION AND GENETIC ANALYSIS OF MICROSATELLITE MARKERS FOR LARIMICHTHYS CROCEA[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(6): 1156-1163. DOI: 10.3724/SP.J.1035.2012.01156

大黄鱼微卫星标记的开发及其遗传方式分析

基金项目: 

国家自然科学基金(30771663)

国家公益性行业(农业)科研专项(200903029-04)

集美大学创新团队科研基金(2011A001)资助

ISOLATION AND GENETIC ANALYSIS OF MICROSATELLITE MARKERS FOR LARIMICHTHYS CROCEA

  • 摘要: 采用FIASCO方法构建大黄鱼(AC)n微卫星富集文库, 从文库中随机挑选90个白色克隆, 经过菌液PCR筛选得到60 (66.7%)个阳性克隆进行测序, 其中有56个克隆(93.3%)含有 CA/GT 重复数大于5的微卫星序列。56个微卫星序列中, 二核苷酸微卫星51个(91.1%), 三核苷酸微卫星5个; 二核苷酸重复中有48个为(AC)n重复, 占二核苷酸总数的94.1%。根据Weber的微卫星分类规则, 完美型占75.0%, 非完美型占8.9%, 复合型微卫星占16.1%。共设计引物52对, 在1个大黄鱼家系中35对引物所在位点具有多态性, 28个(80.0%)位点子代基因型为1:1:1:1(AB CD/AB AC )分离类型, 6个位点属1:1分离类型, 1个位点属1:2:1 (AB AB)分离类型。35个位点中有32个位点的分离符合孟德尔分离比(P0.05), 另外3个位点(LYC0137、LYC0139、LYC0152)明显偏离1:1或者1:1:1:1的孟德尔分离比(P0.05)。本研究开发的微卫星标记为大黄鱼微卫星遗传连锁图谱构建以及群体遗传学、分子进化和系统发育等研究提供了有用的分子工具。
    Abstract: We constructed an (AC)n-microsatellite-enriched library for large yellow croaker Larimichthys crocea(Richardson 1846) using the method of FIASCO. Ninety clones were randomly selected for further colony amplification. The rate of positive clones reached to 66.7%, and 56 of the 60 positive clones sequences contained one or more SSR. By the analysis of repeat motif, dinucleotide repeats were the most dominant (91.1%), followed by trinucleotide repeats (8.9%). Among dinucleotides, (AC)n repeats were the most frequent (94.1%). Using Webers classification rules, the sequences were divided into three categories, the percentage of perfect repeat sequences, imperfect repeat sequences, and compound repeat sequences was 75.0%, 8.9%, and 16.1, respectively. Fifty two microsatellites primer pairs were designed and synthesized. The result showed that 35 SSRs were polymorphic in 46 F1 generation individuals. Twenty eight (80.0%) loci exhibited a segregation ratio of 1:1:1:1 (AB CD/AB AC), serving as the most useful markers segregating in co-dominant fashion. Six loci exhibited a segregation ratio of 1:1, and one loci exhibited a segregation of 1:2:1. Polymorphism analysis showed that 32 SSRs were consisted with Mendelian segregation ratio and could be used to construct the linkage map, while the other 3 SSRs (LYC0137, LYC0139, LYC0152) were departure from the expected Mendelian segregation patterns. These SSRs should be available for genetic linkage mapping, population genetics studies, molecular evolution and phylogenetic study of large yellow croaker.
  • [1]

    Su Y Q, Zhang C L, Wang J, et al. Breeding and Farming of Pseudosciaena crocea[M]. Beijing: Maritime Press. 2004, 1-7 [苏永全, 张彩兰, 王军, 等. 大黄鱼养殖. 北京: 海洋出版社. 2004, 1-7]

    [2]

    Wang Z Y, Xie F J, Cao M Y, et al. Aquaculture and Breeding of Large Yellow Croaker in China [R]. Texas, USA, Aquaculture. 2007, 973

    [3]

    Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Research, 1989, 17(16): 6463-6471

    [4]

    Chistiakov D A, Hellemans B, Volckaert F A M. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics [J]. Aquaculture, 2006, 255(1-4): 1-29

    [5]

    Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics [J]. Aquaculture, 2004, 238(1-4): 1-37

    [6]

    Ye X J, Wang Z Y, Liu X D, et al. Analysis of genetic homozygosity and diversity of two successive generation meio-gynogenetic population in Pseudosciaena crocea using microsatellite markers [J]. Acta Hydrobiologica Sinica, 2010, 34(1): 144-151 [叶小军, 王志勇, 刘贤德, 等. 大黄鱼连续两代雌核发育群体的微卫星标记分析. 水生生物学报, 2010, 34(1): 144-151]

    [7]

    Guo W, Wang Z, Wang Y, et al. Isolation and characterization of six microsatellite markers in the large yellow croaker (Pseudosciaena crocea Richardson) [J]. Molecular Ecology Notes, 2005, 5(2): 369-371

    [8]

    An H S, Cho K C, Park J Y. Eleven new highly polymorphic microsatellite loci in the yellow croaker, Pseudosciaena crocea[J]. Molecular Ecology Notes, 2005, 5(4): 866-868

    [9]

    Chang Y, Liang L, Lei Q, et al. Isolation and characterization of 11 microsatellite markers for the large yellow croaker, Pseudosciaena crocea[J]. Conservation Genetics, 2009, 10(5): 1405-1408

    [10]

    Hao J, Sun X W, Liang L Q, et al. Enrichment of large yellow croaker genome microsatellite markers using magnet beads [J]. Journal of Fishery Sciences of China, 2006, 13(5): 762-766 [郝君, 孙效文, 梁利群, 等. 大黄鱼微卫星标记的富集与筛选. 中国水产科学, 2006, 13(5): 762-766]

    [11]

    Ye H, Wang X Q, Gao T X, et al. EST-derived microsatellites in Pseudosciaena croceaand their applicability to related species [J]. Acta Oceanologica Sinica, 2010, 29(6): 83-91

    [12]

    Liu X D, Zhao G T, Wang Z Y, et al. Parentage assignment and parental contribution analysis in large yellow croaker (Larimichthys crocea) using microsatellite markers [J]. Current Zoology, 2012, 58(2): 244-249

    [13]

    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed [M]. New York: Cold Spring Harbor Laboratory Press. 1989, 468-470

    [14]

    Zane L, Bargelloni L, Patarello T. Strategies for microsatellite isolation: a review [J]. Molecular Ecology, 2002, 11(1): 1-16

    [15]

    Wang Z Y, Tsoi K H, Chuk H. Applications of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp [J]. Biochemical Systematics and Ecology, 2004, 32(4): 399-407

    [16]

    Weber J L. Informativeness of human (dc-da)n (dg-dt)n polymorphisms [J]. Genomics, 1990, 7(4): 524-530

    [17]

    Guo B Y, Xie C X, Qi P Z. et al. Construction and identification of DNA libraries enriched for microsatellite repeat sequences of Glyptosternum maculatum[J]. Acta Hydrobiologica Sinica, 2011, 35(6): 908-912 [郭宝英, 谢从新, 祈鹏志, 等. 黑斑原鮡微卫星DNA富集文库构建与鉴定. 水生生物学报, 2011, 35(6): 908-912]

    [18]

    Jerry D R, Evans B S, Matt K, et al. Development of a microsatellite DNA parentage marker suite for black tiger shrimp Penaeus monodon[J]. Aquaculture, 2006, 255(1-4): 542-547

    [19]

    Ren P, Wang Z Y, Yao C L, et al. Development of 11 polymorphic microsatellite loci in the small abalone (Haliotis diversicolor Reeve) [J]. Molecular Ecology Resources, 2008, 8(6): 1390-1392

    [20]

    Bernardi G, Mounchiroud D, Gautier C, et al. Compositional patterns in vertebrate genomes: Conservation and charge in evolution [J]. Molecular Evolution, 1988, 28(1-2): 7-18

    [21]

    Sueoka N. On the genetics basis of variation and heterogeneity of DNA base composition [J]. Proceedings of the National Academy of Sciences, USA, 1962, 48(4): 582-592

    [22]

    Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis [J]. Genome Research, 2000, 10(3): 967-981

    [23]

    Xu P S, Wang L, Liu E, et al. Generation of channel catfish BAC end sequences for marker development and assessment of syntenic conservation with other fish species [J]. Animal Genetics, 2006, 37(4): 321-326

    [24]

    Hauswaldt J S, Glenn T C. Microsatellite DNA loci from the diamondback terrapin (Malaclemys terrapin) [J]. Molecular Ecology Notes, 2003, 3(2): 174-176

    [25]

    Banks M A, Blouin M S, Baldwin B A, et al. Isolation and inheritance of novel microsatellites in Chinook salmon (Oncorhymchus tschawyscha) [J]. Journal of Heredity, 1999, 90(2): 281-288

    [26]

    Callen D F, Thimpson A D, Shen Y, et al. Incidence and origin of null alleles in the (AC)n microsatellite markers [J]. The American Journal of Human Genetics, 1993, 52(5): 922- 927

  • 期刊类型引用(10)

    1. 刘勤,唐保军,刘堃,王磊,沈映君,王茜,余丽萍,高凌,陆亚男. 基于CNKI数据库的大黄鱼(Larimichthys crocea)种质资源及其开发利用研究进展. 渔业信息与战略. 2022(01): 54-60 . 百度学术
    2. 吴利娜,张凝鋆,孙松,袁吉贵,陈佳,李苗苗,林楠,游宇,王伟继,丁少雄. 微卫星分子标记技术在大黄鱼增殖放流效果评估中的应用. 中国水产科学. 2021(09): 1100-1108 . 百度学术
    3. 黄杰,刘磊,杨波,杨承忠. 普通鸬鹚基因组微卫星分布规律研究. 野生动物学报. 2020(01): 108-114 . 百度学术
    4. 彭新亮,刘俊,赵良杰,郭旭升. 银鲴肝脏转录组测序和功能分析. 基因组学与应用生物学. 2020(04): 1471-1477 . 百度学术
    5. 黄杰,杨波,贾银平,杨承忠. 白鹭基因组微卫星分布规律研究. 重庆师范大学学报(自然科学版). 2019(05): 66-71 . 百度学术
    6. 杨万云,郑军军,贾博寅,常树卓,刘慧,李春义,王桂武,杨福合. 微卫星分子标记及其在动物遗传育种中的研究进展. 基因组学与应用生物学. 2017(11): 4644-4649 . 百度学术
    7. 闫路路,秦艳杰,闫喜武,王琳楠,毕成隆,张津源. 基于转录组平台的蛤仔微卫星标记筛选. 生态学报. 2015(05): 1573-1580 . 百度学术
    8. 许益铵,柳敏海,油九菊,罗海忠,王惠儒,傅荣兵. 舟山附近海域3个大黄鱼养殖群体遗传多样性的微卫星分析. 浙江海洋学院学报(自然科学版). 2014(02): 140-146 . 百度学术
    9. 李佳凯,王志勇,韦信键,蔡明夷,刘洋,刘贤德. 大黄鱼微卫星多重PCR体系的建立及其应用. 水产学报. 2014(04): 470-475 . 百度学术
    10. 刘贤德,隋班良,王志勇,蔡明夷. 大黄鱼快长相关微卫星标记的筛选与验证. 水生生物学报. 2013(06): 1036-1043 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数:  1166
  • HTML全文浏览量:  0
  • PDF下载量:  731
  • 被引次数: 24
出版历程
  • 收稿日期:  2012-04-18
  • 修回日期:  2012-08-21
  • 发布日期:  2012-11-24

目录

    /

    返回文章
    返回