HE Wan-Chao, YIN Cheng-Jie, YUAN Jing, CHU Zhao-Sheng, ZHANG Ai, GUO Long-Gen. ECOLOGICAL CORRIDOR CONSTRUCTION ON THE DISTRIBUTION AND DIVERSITY OF FISH COMMUNITIES IN DIFFERENT TYPES OF BAYS IN ERHAI LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(12): 1965-1975. DOI: 10.7541/2023.2023.0091
Citation: HE Wan-Chao, YIN Cheng-Jie, YUAN Jing, CHU Zhao-Sheng, ZHANG Ai, GUO Long-Gen. ECOLOGICAL CORRIDOR CONSTRUCTION ON THE DISTRIBUTION AND DIVERSITY OF FISH COMMUNITIES IN DIFFERENT TYPES OF BAYS IN ERHAI LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(12): 1965-1975. DOI: 10.7541/2023.2023.0091

ECOLOGICAL CORRIDOR CONSTRUCTION ON THE DISTRIBUTION AND DIVERSITY OF FISH COMMUNITIES IN DIFFERENT TYPES OF BAYS IN ERHAI LAKE

Funds: Supported by the Lakeside Buffer Zone Ecological Restoration and Wetland Construction Performance Assessment Project of Erhai Basin, Dali(YF(ZC)2019-2025)
  • Received Date: March 21, 2023
  • Rev Recd Date: May 08, 2023
  • Available Online: June 01, 2023
  • Issue Publish Date: September 10, 2023
  • The construction of ecological corridor in lakeside zone is a a novel approach to restoring the ecology of the lakeside, but little attention has been paid to the effects of corridor on the distribution and diversity of aquatic communities in this zone. In this study, we investigated the changes in fish community characteristics in different types of bays (S-type and L-type) before and after the construction of the ecological corridor in Erhai Lake. The results showed that: (1) The construction of ecological corridor caused decrease of fish dominance in S-type bays, but an increase in L-type. (2) The fish diversity index in L-type increased significantly after construction, with the H′ showing a significant difference compared to before (P<0.05), however, the diversity index decreased in S-type. (3) The fish density decreased in S-type, but the biomass increased due to an increase in the abundance of medium and large-sized fish, while the abundance of small-sized fish increased in L-type. The fish abundance biomass comparison curve showed that the S-type was a moderate disturbance after construction, while, the disturbance of L-type was mild and the fish community structure was more stable. (4) RDA analysis showed that water transparency, pH and water depth were the main environmental factors affecting fish biomass in both S-type and L-type bays, and silver carp was the dominant fish. In conclusion, the construction of ecological corridor has a significant impact on the structure of fish community, particularly in S-type where it leads to a rapid change in fish composition community. Therefore, it is suggested that ecological corridor construction should focus on the transformation of L-type. This study provides a theoretical basis for the protection of fish diversity and habitat restoration.

  • [1]
    Tang J, Ye S, Li W, et al. Status and historical changes in the fish community in Erhai Lake [J]. Chinese Journal of Oceanology and Limnology, 2013, 31(4): 712-723. doi: 10.1007/s00343-013-2324-7
    [2]
    杜宝汉, 李永安. 洱海鱼类多样性危机及解危对策 [J]. 环境科学研究, 2001, 14(3): 42-44. doi: 10.3321/j.issn:1001-6929.2001.03.013

    Du B H, Li Y A. Danger risk to fish diversity in Erhai Lake and proposals to dispel it [J]. Research of Environmental Sciences, 2001, 14(3): 42-44. doi: 10.3321/j.issn:1001-6929.2001.03.013
    [3]
    费骥慧, 汪兴中, 邵晓阳. 洱海鱼类群落的空间分布格局 [J]. 水产学报, 2012, 36(8): 1225-1233. doi: 10.3724/SP.J.1231.2012.28002

    Fei J H, Wang X Z, Shao X Y. Spatial pattern of fish community in the Erhai Lake [J]. Journal of Fisheries of China, 2012, 36(8): 1225-1233. doi: 10.3724/SP.J.1231.2012.28002
    [4]
    何彦敏, 杨堂亮, 刘杰, 等. 洱海鱼类资源现状调查研究 [J]. 楚雄师范学院学报, 2010, 25(3): 53-58. doi: 10.3969/j.issn.1671-7406.2010.03.009

    He Y M, Yang T L, Liu J, et al. The investigation of the fish current resources in Erhai Lake [J]. Journal of Chuxiong Normal University, 2010, 25(3): 53-58. doi: 10.3969/j.issn.1671-7406.2010.03.009
    [5]
    舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究 [J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125

    Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental DNA metabarcoding [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125
    [6]
    严晖, 周正文, 赵芬, 等. 洱海土著鱼类调查研究 [C]. 第三届全国现代生态渔业可持续发展交流研讨会论文集, 2011: 84-91.

    Yan H. Zhou Z W, Zhao F, et al. The Investigation of the Indigenous of Fishes in Erhai Lake [C]. Proceedings of the Third National Workshop on Sustainable Development of Modern Ecological Fisheries, 2011: 84-91.
    [7]
    周兴安, 乔永民, 王赛, 等. 洱海鱼类群落结构特征及其与环境因子关系 [J]. 生态学杂志, 2016, 35(6): 1569-1577.

    Zhou X A, Qiao Y M, Wang S, et al. Characteristics of fish assemblages associated with environmental factors in the Lake Erhai [J]. Chinese Journal of Ecology, 2016, 35(6): 1569-1577.
    [8]
    公莉, 过龙根, 尹成杰, 等. 洱海西太公鱼和太湖新银鱼生长特性及种群调控效果研究 [J]. 水生态学杂志, 2022, 43(1): 117-123. doi: 10.15928/j.1674-3075.202001220023

    Gong L, Guo L G, Yin C J, et al. Growth characteristics and population regulation of Hypomesus nipponensis and Neosalanx taihuensis in Erhai Lake [J]. Journal of Hydroecology, 2022, 43(1): 117-123. doi: 10.15928/j.1674-3075.202001220023
    [9]
    Yin C, Chen Y, Guo L, et al. Fish assemblage shift after Japanese smelt (Hypomesus nipponensis McAllister, 1963) invasion in Lake Erhai, a subtropical plateau lake in China [J]. Water, 2021, 13(13): 1800. doi: 10.3390/w13131800
    [10]
    Yin C, He W, Guo L, et al. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes [J]? Water Research, 2022(218): 118483. doi: 10.1016/j.watres.2022.118483
    [11]
    吕兴菊, 窦嘉顺, 杨四坤, 等. 洱海湖滨带生态恢复工程综述 [C]. 第五届中国湖泊论坛论文集. 2015: 331-336.

    Lv X J, Dou J S, Yang S K, et al. An Overview of the Ecological Restoration Project of the Lakeshore Zone of the Erhai [C]. Proceedings of the Fifth China Lakes Forum. 2015: 331-336.
    [12]
    Beier P, Noss R F. Do habitat corridors provide connectivity [J]? Conservation Biology, 1998, 12(6): 1241-1252. doi: 10.1111/j.1523-1739.1998.98036.x
    [13]
    Rudnick D A, Ryan S J, Beier P, et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities [J]. Issues in Ecology, 2012(16): 1-20.
    [14]
    朱强, 俞孔坚, 李迪华. 景观规划中的生态廊道宽度 [J]. 生态学报, 2005, 25(9): 2406-2412.

    Zhu Q, Yu K J, Li D H. The width of ecological corridor in landscape planning [J]. Acta Ecologica Sinica, 2005, 25(9): 2406-2412.
    [15]
    大理市人民政府, 洱海生态廊道: 打造生态安全“绿色长廊”: http://www.yndali.gov.cn/.

    People’s Government of Da Li City, Erhai Ecological Corridor: Creating “Green Corridor” of Ecological Security.
    [16]
    谷先坤, 沈冬冬, 桂泽禹, 等. 网围拆除后东太湖鱼类群落结构及生物多样性研究 [J]. 水产养殖, 2022, 43(2): 1-9.

    Gu X K, Shen D D, Gui Z Y, et al. Study on community structure and biodiversity of fish in East Taihu Lake after removal of net enclosure [J]. Journal of Aquaculture, 2022, 43(2): 1-9.
    [17]
    李英杰, 金相灿, 胡社荣, 等. 湖滨带类型划分研究 [J]. 环境科学与技术, 2008, 31(7): 21-24.

    Li Y J, Jin X C, Hu S R, et al. Classification of aquatic-terrestrial ecotones [J]. Environmental Science & Technology, 2008, 31(7): 21-24.
    [18]
    国家环境保护总局. 水和废水监测分析方法-第4版 [M]. 中国环境科学出版社, 2002: 243-284.

    Ministry of Environmental Protection of the People’s Republic of China, Editorial Board of Water and Wastewater Monitoring and Analysis Methods: 4th edition [M]. Beijing: China Environmental Science Press, 2002: 243-284.
    [19]
    陈银瑞, 褚新洛. 《云南鱼类志》上册 [M]. 北京: 科学出版社, 1989: 37-350.

    Chen Y R, Chu X L. Fish Fauna of Yunnan-Volume Ⅰ [M]. Beijing: Science Press, 1989: 37-350.
    [20]
    陈银瑞, 褚新洛. 《云南鱼类志》下册 [M]. 北京: 科学出版社, 1990: 5-264.

    Chen Y R, Chu X L. Fish Fauna of Yunnan-Volume Ⅱ [M]. Beijing: Science Press, 1990: 5-264.
    [21]
    陈宜瑜. 《中国动物志-硬骨鱼纲鲤形目》中卷 [M]. 北京: 科学出版社, 1998: 61-444.

    Chen Y Y. Fauna Sinica, Osteichthyes, Cypriniformes Ⅱ [M]. Beijing: Science Press, 1998: 61-444.
    [22]
    乐佩琦. 《中国动物志-硬骨鱼纲鲤形目》下卷 [M]. 北京: 科学出版社, 2000: 273-425.

    Yue P Q. Fauna Sinica, Osteichthyes, Cypriniformes Ⅲ [M]. Beijing: Science Press, 2000: 273-425.
    [23]
    Gao H, Liu H, Wang Q, et al. Niche analysis of the main fish in the Lhasa River Basin [J]. Water, 2023, 15(5): 860. doi: 10.3390/w15050860
    [24]
    朱挺兵, 胡飞飞, 龚进玲, 等. 澜沧江西藏段鱼类群落结构及多样性 [J]. 中国水产科学, 2022, 29(2): 304-313. doi: 10.12264/JFSC2021-0211

    Zhu T B, Hu F F, Gong J L, et al. Community structure and species diversity of fishes in the Tibet reach of the Lancang River, China [J]. Journal of Fishery Sciences of China, 2022, 29(2): 304-313. doi: 10.12264/JFSC2021-0211
    [25]
    Wu C, Wang X, Zhong J, et al. Spatial patterns of larval and juvenile fish assemblages in an eddy area in the Western South China sea [J]. Frontiers in Marine Science, 2022(9): 832817. doi: 10.3389/fmars.2022.832817
    [26]
    Ren X, Jiang S, Ren L, et al. Changes in fish assemblage structure after pen culture removal in Gehu Lake, China [J]. Fishes, 2022, 7(6): 382. doi: 10.3390/fishes7060382
    [27]
    秦蒙琳, 王玲玲, 罗铸. 海菜花重现洱海 [J]. 中国报道, 2021(9): 50-51.

    Qin M L, Wang L L, Luo Z. Cauliflower reappears in Erhai Lake [J]. China Report, 2021(9): 50-51.
    [28]
    叶少文, 李钟杰, 曹文宣. 牛山湖两种不同生境小型鱼类的种类组成、多样性和密度 [J]. 应用生态学报, 2007, 18(7): 1589-1595.

    Ye S W, Li Z J, Cao W X. Species composition, diversity and density of small fishes in two different habitats in Niushan Lake [J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1589-1595.
    [29]
    洪迎新, 施文卿, 陈宇琛, 等. 水电梯级开发进程中澜沧江干流鱼类群落演变特征 [J]. 生态学报, 2021, 41(1): 235-253.

    Hong Y X, Shi W Q, Chen Y C, et al. Succession of fish community in the mainstream of Lancang River during cascade hydropower development [J]. Acta Ecologica Sinica, 2021, 41(1): 235-253.
    [30]
    Fu X, Yang W, Zheng L, et al. Spatial patterns of macrobenthos taxonomic and functional diversity throughout the ecotones from river to lake: a case study in Northern China [J]. Frontiers in Ecology and Evolution, 2022(10): 922539. doi: 10.3389/fevo.2022.922539
    [31]
    邵科, 杨志, 唐会元, 等. 观音岩水电站蓄水前后金沙江攀枝花江段鱼类群落结构及变化特征 [J]. 长江流域资源与环境, 2020, 29(11): 2417-2426.

    Shao K, Yang Z, Tang H Y, et al. Changes of fish community structures in Panzhihua section of the Jinsha River before and after impoundment of the Guanyinyan hydropower station [J]. Resources and Environment in the Yangtze Basin, 2020, 29(11): 2417-2426.
    [32]
    熊美华, 杨志, 胡兴坤, 等. 长江中游监利江段鱼类群落结构研究 [J]. 长江流域资源与环境, 2019, 28(9): 2109-2118.

    Xiong M H, Yang Z, Hu X K, et al. Studies on fish community structure in Jianli section of the middle reaches of the Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2019, 28(9): 2109-2118.
    [33]
    孙习武, 张硕, 赵裕青, 等. 海州湾人工鱼礁海域鱼类和大型无脊椎动物群落组成及结构特征 [J]. 上海海洋大学学报, 2010, 19(4): 505-513.

    Sun X W, Zhang S, Zhao Y Q, et al. Community structure of fish and macroinvertebrates in the artificial reef sea area of Haizhou Bay [J]. Journal of Shanghai Ocean University, 2010, 19(4): 505-513.
    [34]
    Bohnsack J A, Sutherland D L. Artificial Reef Research: A Review with Recommendations for Future Priorities [J]. Bulletin of Marine Science, 1985, 37(1): 11-39.
    [35]
    Evans L C, Melero Y, Schmucki R, et al. Mechanisms underpinning community stability along a latitudinal gradient: insights from a niche-based approach [J]. Global Change Biology, 2023, 29(12): 3271-3284. doi: 10.1111/gcb.16684
    [36]
    何术锋, 唐磊, 王骏, 等. 水坝拆除对黑水河鱼类群落结构和空间分布的影响 [J]. 生态学报, 2021, 41(9): 3525-3534.

    He S F, Tang L, Wang J, et al. Effects of dam removal on fish community structure and spatial distribution in Heishui River [J]. Acta Ecologica Sinica, 2021, 41(9): 3525-3534.
    [37]
    Staentzel C, Kondolf G M, Schmitt L, et al. Restoring fluvial forms and processes by gravel augmentation or bank erosion below dams: a systematic review of ecological responses [J]. Science of the Total Environment, 2020(706): 135743. doi: 10.1016/j.scitotenv.2019.135743
    [38]
    余杨, 鲁婧, 谢彪, 等. 南昌市13个湖泊的鱼类群落结构及其物种多样性特征 [J]. 水生态学杂志, 2021, 42(5): 110-118.

    Yu Y, Lu J, Xie B, et al. Fish community structure and species biodiversity in 13 lakes of Nanchang city [J]. Journal of Hydroecology, 2021, 42(5): 110-118.
    [39]
    刘燕山, 谷先坤, 唐晟凯, 等. 东太湖鱼类群落结构特征及其与环境因子的关系 [J]. 生态学报, 2021, 41(2): 769-780.

    Liu Y S, Gu X K, Tang S K, et al. Fish community structure and its relationship with main environmental variables in the East Taihu Lake [J]. Acta Ecologica Sinica, 2021, 41(2): 769-780.
    [40]
    Guo C, Chen Y, Liu H, et al. Modelling fish communities in relation to water quality in the impounded lakes of China’s South-to-North Water Diversion Project [J]. Ecological Modelling, 2019(397): 25-35. doi: 10.1016/j.ecolmodel.2019.01.014
    [41]
    帅方敏, 李新辉, 刘乾甫, 等. 珠江水系鱼类群落多样性空间分布格局 [J]. 生态学报, 2017, 37(9): 3182-3192.

    Shuai F M, Li X H, Liu Q F, et al. Spatial patterns of fish diversity and distribution in the Pearl River [J]. Acta Ecologica Sinica, 2017, 37(9): 3182-3192.
    [42]
    杜浩, 班璇, 张辉, 等. 天然河道中鱼类对水深、流速选择特性的初步观测——以长江江口至涴市段为例 [J]. 长江科学院院报, 2010, 27(10): 70-74. doi: 10.3969/j.issn.1001-5485.2010.10.015

    Du H, Ban X, Zhang H, et al. Preliminary observation on preference of fish in natural channel to water velocity and depth: case study in reach of Yangtze River from Jiangkou town to Yuanshi town [J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(10): 70-74. doi: 10.3969/j.issn.1001-5485.2010.10.015
    [43]
    Harvey J, Gooseff M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins [J]. Water Resources Research, 2015, 51(9): 6893-6922. doi: 10.1002/2015WR017617
  • Related Articles

    [1]HU Shao-Qiu, DUAN Rui, ZHANG Dong-Xu, BAO Jiang-Hui, LÜ Hua-Fei, DUAN Ming. CLASSIFICATION OF 3D POINT CLOUD MODELS OF FISH BASED ON POINT TRANSFORMER APPROACH[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(2): 022515. DOI: 10.7541/2024.2024.0053
    [2]SHU Lu, LIN Jia-Yan, XU Yuan, CAO Te, FENG Ji-Meng, PENG Zuo-Gang. INVESTIGATING THE FISH DIVERSITY IN ERHAI LAKE BASED ON ENVIRONMENTAL DNA METABARCODING[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1080-1086. DOI: 10.7541/2020.125
    [3]BIAN Guang-Ming, WANG Na-Ling, HU Ze-Hui, WANG Yue-Bin, HU Cheng-Shuo, CHAI Xue-Jun. A COMPARATIVE ANALYSIS ON THE GENETIC DIVERSITY OF TRICHIURUS LEPTURUS[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(2): 282-290. DOI: 10.7541/2019.035
    [4]LIU Yi, YANG Shao, LIU Xiao-Feng. ECOLOGICAL RISK ASSESSMENT OF MICROCYSTIS BLOOMS IN ERHAI LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2018, 42(5): 1066-1074. DOI: 10.7541/2018.131
    [5]WEI Zhi-Hong, ZHU Meng-Ling, YU Gong-Liang, LI Ren-Hui. OCCURRENCE OF PLANKTONIC CYANOBACTERIUM TYCHONEMA BOUURRELLYI IN ERHAI LAKE AND ITS TAXONOMIC STUDIES[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(6): 1171-1175. DOI: 10.3724/SP.J.1035.2012.01171
    [6]LI Zhong, LIANG Hong-Wei, ZOU Gui-Wei. A RAPID PCR-QUALITY DNA EXTRACTION METHOD IN FISH[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(2): 365-367. DOI: 10.3724/SP.J.1035.2012.00365
    [7]XIANG Xian-Fen, LAN Bo, YANG Jiao-Yan, ZHU Chi, YANG Shao. THE CHARACTERS OF CLADOPHORA COMMUNITY IN THE LITTORAL ZONE OF LAKE ERHAI[J]. ACTA HYDROBIOLOGICA SINICA, 2011, 35(6): 1049-1055. DOI: 10.3724/SP.J.1035.2011.01049
    [8]Shahid Mahboob, Bilal Hussain, Zahid Iqbal, Abdul Shakoor Chaudhry. ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO[J]. ACTA HYDROBIOLOGICA SINICA, 2009, 33(3): 484-491.
    [9]YANG Wei-Dong, ZHANG Xin-Lian, LIU Jie-Sheng, GAO Jie, ZHANG Ping. INHIBITORY EFFECT AND SINKING BEHAVIOUR OF WOOD MEALS FROM CHINA FIR ON ALEXANDRIUM TAMARENSE IN CULTURES[J]. ACTA HYDROBIOLOGICA SINICA, 2005, 29(2): 215-219.
    [10]Wu Jihua, Liang Yanling, Sun Xida. NEWLY RECORDED SPECIES OF FREE-LIVING NEMATODES FROM CHINA (CHROMADORIDA,ENOPLIDA ARAEOLAIMIDA)[J]. ACTA HYDROBIOLOGICA SINICA, 1997, 21(4): 320-321.
  • Cited by

    Periodical cited type(25)

    1. 王轶林,王亚军,陈建酬,朱学芝,石桉宁,王玥,廖景轩,刘丽燕. 湿态发酵菜粕对草鱼生长、血清生化指标、肝脏抗氧化力、肠道消化酶活性和肠道菌群的影响. 广东畜牧兽医科技. 2025(01): 33-42 .
    2. 王秀丽,杨霞,李浩,顾秉南,刘辉,孟禹哲. 不同植物蛋白源替代鱼粉对青鱼生长及免疫的影响. 现代畜牧科技. 2024(04): 49-52 .
    3. 魏正玲,罗凯,邵仙萍,郜卫华,吴成龙,赵成民. 菜籽粕替代鱼粉对青鱼生长、抗氧化能力和肠道健康的影响. 动物营养学报. 2024(06): 3876-3891 .
    4. 袁梦莹,王恒志,米海峰,张璐,邓君明. 不同来源菜籽粕对鲤鱼生长、消化生理、抗氧化能力和健康的影响. 动物营养学报. 2023(01): 469-493 .
    5. 陈倪慧,杨霞,孙珊珊,雷西汀,邵仙萍,吴成龙,叶金云. 发酵植物蛋白复配替代豆粕对青鱼生长、免疫、抗氧化及肠道菌群结构的影响. 动物营养学报. 2023(04): 2478-2489 .
    6. 黄莹,娄格格,刘轩宇,满洲,姜能座,郭雅哲,朱晓鸣,葛汝祥,刘昊昆,陈新华,童梦琪. 双低菜粕替代鱼粉对克氏原螯虾幼虾生长性能、抗氧化能力和消化系统组织形态的影响. 水生生物学报. 2023(12): 1918-1931 . 本站查看
    7. 江萍,钟宏光. 不同来源菜籽粕对鲤生长性能的影响. 黑龙江水产. 2023(06): 441-443 .
    8. 王水军,贾晓虎,胡丹. 蚕蛹在鱼类饲料中的应用进展. 四川蚕业. 2019(04): 42-44 .
    9. 胡亚军,胡毅,郇志利,陈团,何艳林. 几种复合蛋白源对黄鳝生长、肌肉氨基酸组成及血清部分生化指标的影响. 饲料工业. 2017(20): 20-26 .
    10. 李宝山,张利民,张德瑞,孙永智,王世信,王际英. 发酵豆粕替代藻粉对刺参(Apostichopus japonicus)生长及体组成的影响. 渔业科学进展. 2017(05): 130-139 .
    11. 刘虎,任傲,方热军. 发酵降低菜粕中抗营养因子的研究进展. 饲料与畜牧. 2017(02): 43-45 .
    12. 冷向军. 青鱼的营养需求与配合饲料研究. 饲料工业. 2016(06): 1-7 .
    13. 王国霞,莫文艳,盛广成,黄文庆,王绥涛,黄燕华. 印度菜粕替代国产菜粕对奥尼罗非鱼生长、体组成及健康状况的影响. 华南农业大学学报. 2016(03): 9-16 .
    14. 谌芳,吉维舟,刘晓娜,黄春红. 养殖模式与饲料原料对鱼类肉质影响的研究进展. 饲料研究. 2016(21): 38-42 .
    15. 刘虎,方热军. 菜粕在动物生产中的应用. 饲料与畜牧. 2016(12): 47-49 .
    16. 李小霞,邱彬崇,柳碧薇,甘炼,潘庆. 发酵啤酒糟替代配合饲料中豆粕对奥尼罗非鱼生长与生化指标的影响. 中国水产科学. 2016(02): 396-405 .
    17. 付晶晶,黄燕华,曹俊明,王国霞,莫文艳,陈晓瑛,黄文庆. 五种植物蛋白源替代鱼粉对花鲈血清生化指标、转氨酶活性及抗氧化应激参数的影响. 湖北农业科学. 2015(20): 5087-5091+5095 .
    18. 彭强. 蚕蛹在水产动物营养中的应用研究. 河北渔业. 2015(06): 57-59+69 .
    19. 姚俊鹏,肖勤. 水产养殖中鱼粉替代蛋白源的研究进展. 饲料研究. 2015(24): 39-46 .
    20. 陈丽婷,郇志利,王晓清,肖光明,胡毅,秦溱,王璐明. 中草药添加剂在水产养殖中的应用研究进展. 水产科学. 2014(03): 190-194 .
    21. 孙宏,叶有标,姚晓红,吴逸飞,王新,柳永,汤江武. 发酵棉籽粕部分替代鱼粉对黑鲷幼鱼生长性能、体成分及血浆生化指标的影响. 动物营养学报. 2014(05): 1238-1245 .
    22. 刘晓庆,朱晓鸣,韩冬,金俊琰,杨云霞,解绶启. 饲料鱼粉、菜粕比例对异育银鲫生长和饲料利用的影响. 水生生物学报. 2014(04): 657-663 . 本站查看
    23. 毛盼,胡毅,李金龙,黄云,肖调义,艾庆辉. 豆粕替代鱼粉对青鱼幼鱼生长及生理生化指标的影响. 淡水渔业. 2013(05): 50-56+67 .
    24. 莫文艳,王国霞,黄文庆,盛广成,林佳南,黄燕华. 印度菜粕替代国产菜粕对奥尼罗非鱼幼鱼生长性能和血清指标的影响. 广东农业科学. 2013(06): 124-127 .
    25. 黄凯,施志仪,李文娟,李倩. 三角帆蚌内脏团不同插核部位对机体生理代谢的影响. 水生生物学报. 2013(06): 1085-1093 . 本站查看

    Other cited types(26)

Catalog

    Article views (551) PDF downloads (89) Cited by(51)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return