Citation: | ZHAO Yan, WANG Cheng, WANG Chao-Xia, WANG Tian-Qi. A NEW TWO-STEP METHOD ON CULTURING SPONTANEOUSLY FLOCCULATING MICROALGA PARACHLORELLA KESSLERI[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(1): 196-204. DOI: 10.7541/2019.024 |
[1] |
Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advances, 2007, 25(3): 294—306 doi: 10.1016/j.biotechadv.2007.02.001
|
[2] |
Scott S A, Davey M P, Dennis J S, et al. Biodiesel from algae: challenges and prospects [J]. Current Opinion in Biotechnology, 2010, 21(3): 277—286 doi: 10.1016/j.copbio.2010.03.005
|
[3] |
Li Y T, Han D X, Hu G R, et al. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii [J]. Biotechnology and Bioengineering, 2010, 107(2): 258—268 doi: 10.1002/bit.22807
|
[4] |
Procházková G, Brányiková I, Zachleder V, et al. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae [J]. Applied Phycology, 2014, 26(3): 1359—1377 doi: 10.1007/s10811-013-0154-9
|
[5] |
黄冠华, 陈峰, 任庆功. 应用小球藻制备生物柴油. 太阳能学报, 2010, 31(9): 1085—1091
Huang G H, Chen F, Ren Q G. Research on biodiesel production from Chlorella vulgaris [J]. Acta Energiae Solaris Sinica, 2010, 31(9): 1085—1091
|
[6] |
Xia L, Ge H M, Zhou X P, et al. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15 [J]. Bioresource Technology, 2013, 144(3): 261—267
|
[7] |
Mujtaba G, Wookjin C, Choul-Gyun L, et al. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions [J]. Bioresource Technology, 2012, 123: 279—283 doi: 10.1016/j.biortech.2012.07.057
|
[8] |
李小妹, 廖兴辉, 王明兹, 等. 两步培养法提高栅藻的生物量及油脂含量. 中国油脂, 2014, 39(5): 53—56
LI X M, Liao X H, Wang M Z, et al. Improvement of biomass and oil content of Scenedesmus sp. by two-step cultivation [J]. China Oils and Fats, 2014, 39(5): 53—56
|
[9] |
Alicja P N, Andrzej B. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris [J]. Plant Growth Regulation, 2014, 73(1): 57—66 doi: 10.1007/s10725-013-9867-7
|
[10] |
Vitova M, Bisova K, Kawano S, et al. Accumulation of energy reserves in algae: from cell cycles to biotechnological applications [J]. Biotechnology Advances, 2015, 33: 1204—1218 doi: 10.1016/j.biotechadv.2015.04.012
|
[11] |
Fernández S J M, Cerón G M C, Sánchez M A, et al. Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode [J]. Biotechnology Progress, 2004, 20: 728—736 doi: 10.1021/bp034344f
|
[12] |
Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions [J]. Biotechnology Letters, 2009, 31(7): 1043—1049 doi: 10.1007/s10529-009-9975-7
|
[13] |
Griffiths M J, van Hille R P, Harrison S T L. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions [J]. Journal of Applied Phycology, 2012, 24(5): 989—1001 doi: 10.1007/s10811-011-9723-y
|
[14] |
Zhou X, Ge H, Xia L, et al. Evaluation of oil-producing algae as potential biodiesel feedstock [J]. Bioresource Technology, 2013, 134: 24—29 doi: 10.1016/j.biortech.2013.02.008
|
[15] |
Přibyl P, Cepák V, Zachleder V. Production of lipids in 10 strains of Chlorella and Parachlorella and enhanced lipid productivity in Chlorella vulgaris [J]. Applied Microbiology & Biotechnology, 2012, 94(2): 549—561
|
[16] |
Uduman N, Qi Y, Danquah M K, et al. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels [J]. Journal of Renewable and Sustainable Energy, 2010, 2(1): 12—17
|
[17] |
Suali E, Sarbatly R. Conversion of microalgae to biofuel [J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4316—4342 doi: 10.1016/j.rser.2012.03.047
|
[18] |
Stanier R Y, Kunisawa R, Mandel M, et al. Purification and properties of unicellular blue-green algae (order chroococcales) [J]. Microbiology and Molecular Biology Reviews, 1971, 35: 171—205
|
[19] |
Zhao P, Yu X Y, Li J J, et al. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10 [J]. Journal of Bioscience and Bioengineering, 2014, 117(1): 72—77
|
[20] |
任洁, 郎筱宇, 刘志媛. 三种脂染色法快速检测小球藻油脂相对含量. 农业生物技术学报, 2015, 23(7): 967—972
Ren J, Lang X Y, Liu Z Y. Rapidly determinating relative lipid level of Chlorella vulgaris sp. by three dyeing methods [J]. Journal of Agricultural Biotechnology, 2015, 23(7): 967—972
|
[21] |
Alam M A, Wan C, Guo S L, et al. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7 [J]. Journal of Bioscience and Bioengineering, 2014, 118(1): 29—33 doi: 10.1016/j.jbiosc.2013.12.021
|
[22] |
Yang S F, Li X Y. Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions [J]. Process Biochemistry, 2009, 44: 91—96 doi: 10.1016/j.procbio.2008.09.010
|
[23] |
Lv J P, Guo J Y, Feng J, et al. A comparative study on flocculating ability and growth potential of two microalgae in simulated secondary effluent [J]. Bioresource Technology, 2016, 205: 111—117 doi: 10.1016/j.biortech.2016.01.047
|
[24] |
Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science Technology, 2003, 37(24): 5701—5710 doi: 10.1021/es034354c
|
[25] |
黄冠华, 陈峰, 魏东. 两步培养法提高蛋白核小球藻的油脂含量. 华南理工大学学报(自然科学版), 2008, 36(12): 97—101 doi: 10.3321/j.issn:1000-565X.2008.12.019
Huang G H, Chen F, Wei D. Improvement of lipid content of chlorella pyrenoidosa by two step cultivation [J]. Journal of South China University of Technology(
|
[26] |
Ho S H, Chen W M, Chang J S. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production [J]. Bioresource Technology, 2010, 101: 8725—8730 doi: 10.1016/j.biortech.2010.06.112
|
[27] |
Li X L, Pribyl P, Bisova K, et al. The microalgaParachlorella kessleri-a novel highly efficient lipid producer [J]. Biotechnology and Bioengineering, 2013, 110(1): 97—107 doi: 10.1002/bit.24595
|
[28] |
Fu L, Cui X C, Li Y B, et al. Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation [J]. Chemical Engineering Journal, 2017, 330: 566—572 doi: 10.1016/j.cej.2017.07.182
|
[29] |
Fernandes B, Teixeira J, Dragone G, et al. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri [J]. Bioresource Technology, 2013, 144: 268—274 doi: 10.1016/j.biortech.2013.06.096
|