徽水河宽鳍鱲的年龄、生长和繁殖

严云志, 闫莉莉, 储玲, 梁阳阳, 陈毅峰, 章星明

严云志, 闫莉莉, 储玲, 梁阳阳, 陈毅峰, 章星明. 徽水河宽鳍鱲的年龄、生长和繁殖[J]. 水生生物学报, 2012, 36(3): 474-481. DOI: 10.3724/SP.J.1035.2012.00474
引用本文: 严云志, 闫莉莉, 储玲, 梁阳阳, 陈毅峰, 章星明. 徽水河宽鳍鱲的年龄、生长和繁殖[J]. 水生生物学报, 2012, 36(3): 474-481. DOI: 10.3724/SP.J.1035.2012.00474
YAN Yun-Zhi, YAN Li-Li, CHU Ling, LIANG Yang-Yang, CHEN Yi-Feng, ZHANG Xing-Ming. AGE, GROWTH AND REPRODUCTION OF ZACCO PLATYPUS IN THE HUISHUI STREAM[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(3): 474-481. DOI: 10.3724/SP.J.1035.2012.00474
Citation: YAN Yun-Zhi, YAN Li-Li, CHU Ling, LIANG Yang-Yang, CHEN Yi-Feng, ZHANG Xing-Ming. AGE, GROWTH AND REPRODUCTION OF ZACCO PLATYPUS IN THE HUISHUI STREAM[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(3): 474-481. DOI: 10.3724/SP.J.1035.2012.00474

徽水河宽鳍鱲的年龄、生长和繁殖

基金项目: 

国家重点基础研究发展计划项目(2009CB119200)

国家自然科学基金 (31172120)

安徽省自然科学基金(090413080)

安徽省教育厅自然科学基金(KJ2009A110, KJ2008B221)资助

AGE, GROWTH AND REPRODUCTION OF ZACCO PLATYPUS IN THE HUISHUI STREAM

  • 摘要: 认识鱼类的生活史特征及其对生态环境变化的响应, 是鱼类物种保护与资源合理利用的基础。于2009年5 月至2010 年4 月研究了黄山地区徽水河中宽鳍鱲(Zacco platypus)的年龄、生长和繁殖。共采集标本352尾, 雌雄性比为0.49∶1, 与1∶1 差异显著。以鳞片为年龄鉴定材料, 雌、雄个体的最大寿命均为3 龄; 年轮主要形成于3 月份。全长和体重呈幂函数关系, 两性间无显著性差异, 关系式表达为W = 6×10–6L3.10; 全长和鳞径呈线性关系, 且两性间差异显著, 关系式分别表达为L♀ = 29.58R + 38.84 和L♂ = 33.17R + 34.99; 2龄个体的退算全长在雌、雄两性间无显著性差异。繁殖时间为4—7 月份; 2 龄时达50%初次性成熟, 其个体全长为98.22(雌)和105.69 mm(雄); 绝对繁殖力为(758 ± 362)卵粒, 相对繁殖力为(77.38 ± 22.15)卵粒/g。同已有的少量研究资料相比较, 徽水河宽鳍鱲的年龄结构较北京地区种群的相对简单, 个体生长较同为黄山地区的浦溪河种群相对快速, 这种生活史特征差异可能是生态环境空间异质性的作用结果, 但有关宽鳍鱲各生活史特征之间的权衡及其对生态环境的响应还有待于进一步研究。
    Abstract: Identifying the life history of fishes is the basis for scientifically protecting fish species diversity and reasonably managing fishery resources. In this study, age, growth and reproduction of Zacco platypus in the Huishui Stream were examined using 352 specimens collected monthly from May 2009 to April 2010. Sex ratio was 0.49∶1 (female: male), which was significantly different from 1∶1 by χ2 test. Using scales for age determination, the largest longevities were both age 3 for females and males. Based on the monthly changes in marginal increment ratio (MIR), annuli on scales were formed during March, which was associated with the relatively low water temperature constraining the somatic growth in winter. The relationships between total length (L) and weight (W) were W = 5×10–6L3.15 for females and W = 7×10–6L3.09 for males. Due to no significant difference discovered by ANCOVA between sexes, L–W relationship was combined as W = 6×10–6L3.10 for both sexes. L–R (scale radius) equations were L = 29.58R + 38.84 for females and L = 33.17R + 34.99 for males, and significant difference was observed between them. The back-calculated total lengths (BCL) at age 2 were (82.59 ± 9.77) mm for females and (84.65 ± 11.77) mm for males, and those age 3 were 120.56 mm (only one specimen) for females and (94.97± 9.85) mm for males. According to t-test result, no significant difference was observed in BCL at age 2 between the two sexes. The monthly changes in gonado-somatic index (GSI) suggested that Z. platypus spawned from April through July, which was almost synchronous with local flooding period, because flood could bring sufficient food for larva and decrease the risk that larva were preyed by predators. Fifty percentage of individuals got the first maturity at age 2, when the average total lengths were 98.22 mm for females and 105.69 mm for males. In terms of the number of the occytes with vitellinogenic granules from mature ovaries, the absolute fecundity (AF) and relative fecundity (RF) were (758 ± 362) eggs and (77.38 ± 22.15) egg/g. Comparing the observed results in this study with those in limited others, the age structure of the population of Z. platypus in the Huishui Stream was similar with that in the Puxi Stream but not with that in Beijing region. In addition, somatic growth of Z. platypus was faster in the Huishui Stream than that in the Puxi Stream, which was suggested by their difference in the back-calculated length at each age. These variations in the life history among different populations of Z. platypus were possibly associated with the spatial heterogeneity in ecological environment. However, the future studies should be operated to identify how this species trades off among different life-history variables (i.e., age and body size at sexual maturity, longevity, fecundity, and somatic growth rate) and how environment influences the trade-off in life history.
  • [1]

    Chen Y Y. Cypriniformes II, Osteichthyes, Fauna Sinica [M]. Beijing: Science Press. 1998, 40—43 [陈宜瑜. 中国动物志, 硬骨鱼纲, 鲤形目 (中卷). 北京: 科学出版社, 1998, 40— 43]

    [2]

    Yin M C. Ecology of Fishes [M]. Beijing: Science Press. 1993, 1—10 [殷名称. 鱼类生态学. 北京: 科学出版社. 1993, 1—10]

    [3]

    Xing Y C, Zhao Y H, Zhang J, et al. Growth and diets of Zacco platypus distributed in Beijing [J]. Acta Zoologica Sinica, 2007, 53(6): 982—993 [邢迎春, 赵亚辉, 张洁, 等. 北京地区宽鳍鱲的生长及食性. 动物学报, 2007, 53(6): 982—993]

    [4]

    Xiang X Y, Chu L, Zhou R L, et al. Age and growth of Zacco platypus in Puxi River of Huangshan Mountain [J]. Freshwater Fisheries, 2009, 39(6): 10—15 [项秀颖, 储玲, 周瑞龙, 等. 黄山浦溪河宽鳍鱲的年龄和生长. 淡水渔业, 2009, 39(6): 10—15]

    [5]

    Wootton R J. Ecology of Teleost Fishes [M]. London and New York: Chapman & Hall. 1990

    [6]

    Yan Y Z, Chen Y F. Changes in the life history of Abbottina rivularis in Lake Fuxian [J]. Journal of Fish Biology, 2007, 70: 959—964

    [7]

    Yan Y Z, Chen Y F. Variations in reproductive strategies between one invasive population and two native populations of Pseudorabora parva [J]. Current Zoology, 2009, 55(1): 56—60

    [8]

    Vannote R L, Minshall G W, Cumins K W, et al. The river continuum concept [J]. Canadian Journal of Fisheries and Aquatic Science, 1980, 37: 130—137

    [9]

    Schlosser I J. Environmental variation, life history attributes, and community structure in stream fishes: Implications for environmental management and assessment [J]. Environmental Management, 1990, 14: 621—628

    [10]

    Goto A. Life-history variations in the fluvial sculpin, Cottus nozawae (Cottidae), along the course of a small mountain stream [J]. Environmental Biology of Fishes, 1998, 52: 203— 212

    [11]

    Strahler A N. Quantitative analysis of watershed geomorphology[J]. Transactions-American Geophysical Union, 1957, 38: 913—920

    [12]

    Licandeo R R, Lamilla J G, Rubilar P G, et al. Age, growth and sexual maturity of the yellownose skate, Dipturus chilensis, in the southeastern Pacific [J]. Journal of Fish Biology, 2006, 68: 488—506

    [13]

    Zhu Q, Xia L Q, Chang J B. Computer identification on otolith microstructure of fish [J]. Acta Hydrobiologica Sinica, 2002, 26(6): 600—604 [朱旗, 夏立启, 常剑波. 鱼类耳石微结构的计算机自动识别. 水生生物学报, 2002, 26(6): 600—604]

    [14]

    Welcomme R L. Fisheries Ecology of Floodplain Rivers [M]. London: Longman. 1979

    [15]

    Grossman G D, Dowd J F, Crawford M. Assemblage stability in stream fish: a review [J]. Environmental Management, 1990, 14: 661—671

    [16]

    Matthews W J. Patterns in Freshwater Fish Ecology [M]. New York: Chapman and Hall. 1998

    [17]

    Yan Y Z, Zhan Y J, Chu L, et al. Effects of stream size and spatial position on stream-dwelling fish assemblages [J]. Acta Hydrobiologica Sinica, 2010, 34(5): 1022—1030 [严云志, 占姚军, 储玲, 等. 溪流大小及其空间位置对鱼类群落结构的影响. 水生生物学报, 2010, 34(5): 1022—1030]

    [18]

    Yan Y Z, Xiang X Y, Chu L, et al. Influence of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi Stream, China [J]. Ecology of Freshwater Fish, 2011, 20: 199—208

    [19]

    Matthews W J. Fish faunal “breaks” and stream order in the eastern and central United States [J]. Environmental Biology of Fishes, 1986, 17: 81—92

    [20]

    Lowe-McConnell R H. Ecological Studies in Tropical Fish Communities [M]. Cambridge: Cambridge University Press. 1987

    [21]

    Humphries P. River regulation and fish larvae: variation through space and time [J]. Freshwater Biology, 2002, 47: 1307—1331

    [22]

    Alkins-Koo M. Reproductive timing of fishes in a tropical intermittent stream [J]. Environmental Biology of Fishes, 2000, 57: 49—66

    [23]

    Heino M, Sieckmann U, Godo O R. Measuring probabilistic reaction norms for age and size at maturation [J]. Evolution, 2002, 56: 669—678

    [24]

    Winemiller K O, Rose K A. Patterns of life-history diversification in North American fish: implications for population regulation [J]. Canadian Journal of Fisheries and Aquatic Science, 1992, 49: 2196—2218

  • 期刊类型引用(12)

    1. 俞爱萍,陶兆开,朱园贞. 东津河宽鳍鱲生物学特性研究. 江西水产科技. 2025(01): 13-15 . 百度学术
    2. 席红波,宋雪琳. 鱲属鱼类研究进展. 江西水产科技. 2024(05): 49-53 . 百度学术
    3. 石叶忠,朱双全,潘月,申屠琰,冯彬彬,程鑫,张克鑫,朱卫东,夏荣兴,张玉明,竺俊全. 宽鳍鱲仔稚鱼发育. 浙江海洋大学学报(自然科学版). 2023(02): 136-142 . 百度学术
    4. 孟子豪,李学梅,王旭歌,胡飞飞,刘璐,朱挺兵,杨德国. 汉江支流堵河宽鳍■种群结构与繁殖力研究. 四川动物. 2021(03): 285-291 . 百度学术
    5. 刘远辉,吴博文,温新利,席贻龙. 徽水河浮游动物群落结构的时空变动及分析. 安徽师范大学学报(自然科学版). 2020(03): 264-269+299 . 百度学术
    6. 孟子豪,李学梅,王旭歌,胡飞飞,吴兴兵,李佳荫,杨德国. 汉江上游支流堵河宽鳍鱲的年龄与生长特征研究. 淡水渔业. 2020(05): 55-61 . 百度学术
    7. 曹安娜,李强,包薇红,罗艳,徐润林. 甬江溪口段宽鳍鱲的种群结构及繁殖力初步研究. 水生态学杂志. 2019(02): 94-101 . 百度学术
    8. 李强,张东,宛凤英,李羽如,储玲,严云志. 溪流鱼类群落对低水头坝的大小及功能的响应——以皖南山区河源溪流为例. 水生生物学报. 2018(05): 965-974 . 本站查看
    9. 张登成,熊文,陶捐,陈毅峰. 武汉地区西部食蚊鱼的生长、死亡系数及种群补充模式. 生态学报. 2016(02): 508-517 . 百度学术
    10. 储玲,叶娟,司春,王文剑,严云志,陈毅峰. 黄山九龙峰保护区尖头鱥的年龄、生长和繁殖(英文). 水生生物学报. 2015(01): 29-37 . 本站查看
    11. 朱仁,司春,储玲,芮明,吴添天,严云志. 基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局. 水生生物学报. 2015(04): 686-694 . 本站查看
    12. 王文剑,储玲,司春,朱仁,陈文豪,陈方明,严云志. 秋浦河源国家湿地公园溪流鱼类群落的时空格局. 动物学研究. 2013(04): 417-428 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  2319
  • HTML全文浏览量:  7
  • PDF下载量:  692
  • 被引次数: 17
出版历程
  • 收稿日期:  2011-05-04
  • 修回日期:  2012-02-06
  • 发布日期:  2012-05-24

目录

    /

    返回文章
    返回